Reliability hazard characterization of wafer-level spatial metrology parameters based on LOF-KNN method

Jinli Zhang, Hailong You, Renxu Jia
{"title":"Reliability hazard characterization of wafer-level spatial metrology parameters based on LOF-KNN method","authors":"Jinli Zhang, Hailong You, Renxu Jia","doi":"10.1109/IPFA47161.2019.8984814","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for characterizing device reliability hazard by using wafer-level spatial analysis. The method is based on the combination of the LOF algorithm and KNN algorithm, which can effectively identify and quantify the reliability of the device and detect local outliers. Outlier devices often have serious reliability hazard. This approach takes into account variations in device measurement data due to process variations on the wafer, increasing device reliability and saving cost. The method is verified using the electrical parameter measurements of devices. The results are compared with traditional method.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a new method for characterizing device reliability hazard by using wafer-level spatial analysis. The method is based on the combination of the LOF algorithm and KNN algorithm, which can effectively identify and quantify the reliability of the device and detect local outliers. Outlier devices often have serious reliability hazard. This approach takes into account variations in device measurement data due to process variations on the wafer, increasing device reliability and saving cost. The method is verified using the electrical parameter measurements of devices. The results are compared with traditional method.
基于LOF-KNN方法的片级空间计量参数可靠性危害表征
本文提出了一种利用晶圆级空间分析表征器件可靠性危害的新方法。该方法基于LOF算法和KNN算法的结合,可以有效地识别和量化设备的可靠性,并检测局部异常值。异常设备往往存在严重的可靠性隐患。这种方法考虑到由于晶圆上的工艺变化而导致的器件测量数据的变化,从而提高了器件的可靠性并节省了成本。通过对器件电参数的测量,验证了该方法的有效性。结果与传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信