{"title":"A highly parameterizable parallel processor array architecture","authors":"D. Kissler, Frank Hannig, A. Kupriyanov, J. Teich","doi":"10.1109/FPT.2006.270293","DOIUrl":null,"url":null,"abstract":"In this paper a new class of highly parameterizable coarse-grained reconfigurable architectures called weakly programmable processor arrays is discussed. The main advantages of the proposed architecture template are the possibility of partial and differential reconfiguration and the systematical classification of different architectural parameters which allow to trade-off flexibility and hardware cost. The applicability of our approach is tested in a case study with different interconnect topologies on an FPGA platform. The results show substantial flexibility gains with only marginal additional hardware cost","PeriodicalId":354940,"journal":{"name":"2006 IEEE International Conference on Field Programmable Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Field Programmable Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2006.270293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91
Abstract
In this paper a new class of highly parameterizable coarse-grained reconfigurable architectures called weakly programmable processor arrays is discussed. The main advantages of the proposed architecture template are the possibility of partial and differential reconfiguration and the systematical classification of different architectural parameters which allow to trade-off flexibility and hardware cost. The applicability of our approach is tested in a case study with different interconnect topologies on an FPGA platform. The results show substantial flexibility gains with only marginal additional hardware cost