Time Variant Wave-Signal-Amplitude Trigonometry Regression of Latitudes and Longitudes of the Belmullets of the Atlantic Ocean

R. O. Olanrewaju, S. A. Olanrewaju, Serifat Folorunsho, Abibat Gbemisola Dada
{"title":"Time Variant Wave-Signal-Amplitude Trigonometry Regression of Latitudes and Longitudes of the Belmullets of the Atlantic Ocean","authors":"R. O. Olanrewaju, S. A. Olanrewaju, Serifat Folorunsho, Abibat Gbemisola Dada","doi":"10.28924/ada/stat.3.12","DOIUrl":null,"url":null,"abstract":"This paper introduces time variant wave-signal-amplitude cosine and sine regression as an extension to wave signal Fourier function and Wave-Shape Function (WSF) model. A full-scale conditional characterization of the linear time variant wave-signal-amplitude cosine and sine model of cosine and sine function with random errors (ηi) was proposed. The associated regression coefficients were estimated via the Ordinary Least Square (OLS) technique, such that, the model wave signal, frequency, and phase were carved-out. In application to real life problem, the wave-signal-amplitude trigonometry model was applied to the real-time observations of the latitude and longitude of the wave buoys’ Belmullets of the Atlantic Ocean. The full-scale real-time observations of the wave climate are the time-variant significant wave height (in metre), peak wave (in oC) and sea temperature (in oC) from 2012 to 2022.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.3.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces time variant wave-signal-amplitude cosine and sine regression as an extension to wave signal Fourier function and Wave-Shape Function (WSF) model. A full-scale conditional characterization of the linear time variant wave-signal-amplitude cosine and sine model of cosine and sine function with random errors (ηi) was proposed. The associated regression coefficients were estimated via the Ordinary Least Square (OLS) technique, such that, the model wave signal, frequency, and phase were carved-out. In application to real life problem, the wave-signal-amplitude trigonometry model was applied to the real-time observations of the latitude and longitude of the wave buoys’ Belmullets of the Atlantic Ocean. The full-scale real-time observations of the wave climate are the time-variant significant wave height (in metre), peak wave (in oC) and sea temperature (in oC) from 2012 to 2022.
大西洋斑马鱼经纬度的时变波信幅度三角回归
本文介绍了时变波信号振幅余弦和正弦回归,作为对波信号傅立叶函数和波形函数模型的扩展。提出了具有随机误差(ηi)的余弦和正弦函数的线性时变波-信-幅余弦和正弦模型的全尺寸条件表征。相关的回归系数通过普通最小二乘(OLS)技术估计,这样,模型波信号,频率和相位被雕刻出来。在实际问题中,将波浪-信号-幅度三角模型应用于大西洋贝尔穆lets波浪浮标的经纬度实时观测。波浪气候的全尺寸实时观测是2012 - 2022年的时变有效波高(米)、峰值波高(℃)和海温(oC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信