A new approach for long-term electricity load forecasting

A. Safdarian, M. Fotuhi‐Firuzabad, M. Lehtonen, Milad Aghazadeh, A. Ozdemir
{"title":"A new approach for long-term electricity load forecasting","authors":"A. Safdarian, M. Fotuhi‐Firuzabad, M. Lehtonen, Milad Aghazadeh, A. Ozdemir","doi":"10.1109/ELECO.2013.6713816","DOIUrl":null,"url":null,"abstract":"Long-term electricity load and price forecasts have become critical inputs to energy service provider (ESP) decision makings in restructured environments. This paper presents a three-stage hierarchical approach for long-term electricity load forecasting. These stages are called yearly trend model (YTM), weekly trend model (WTM), and daily trend model (DTM). The first stage fits an appropriate function to data and extracts its yearly trend. The weekly and daily trends are then extracted using the Box-Jenkins method in WTM and DTM, respectively. For doing so, candidate trends are identified using auto correlation function (ACF) and partial auto correlation function (PACF) plots. Then, Akaike information criterion (AIC) and Schwarz information criterion (SIC) are used to select the best-fitted trends. The different behavior of weekends and night times is captured using dummy variables. The obtained yearly, weekly, and daily trends are finally used for electricity load forecasting.","PeriodicalId":108357,"journal":{"name":"2013 8th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECO.2013.6713816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Long-term electricity load and price forecasts have become critical inputs to energy service provider (ESP) decision makings in restructured environments. This paper presents a three-stage hierarchical approach for long-term electricity load forecasting. These stages are called yearly trend model (YTM), weekly trend model (WTM), and daily trend model (DTM). The first stage fits an appropriate function to data and extracts its yearly trend. The weekly and daily trends are then extracted using the Box-Jenkins method in WTM and DTM, respectively. For doing so, candidate trends are identified using auto correlation function (ACF) and partial auto correlation function (PACF) plots. Then, Akaike information criterion (AIC) and Schwarz information criterion (SIC) are used to select the best-fitted trends. The different behavior of weekends and night times is captured using dummy variables. The obtained yearly, weekly, and daily trends are finally used for electricity load forecasting.
电力负荷长期预测的新方法
在结构调整的环境中,长期电力负荷和价格预测已经成为能源服务提供商(ESP)决策的重要输入。本文提出了一种三阶段分层的长期电力负荷预测方法。这些阶段被称为年趋势模型(YTM),周趋势模型(WTM)和日趋势模型(DTM)。第一阶段对数据拟合适当的函数,提取其年趋势。然后分别在WTM和DTM中使用Box-Jenkins方法提取周趋势和日趋势。为此,使用自相关函数(ACF)和部分自相关函数(PACF)图来识别候选趋势。然后利用赤池信息准则(Akaike information criterion, AIC)和施瓦茨信息准则(Schwarz information criterion, SIC)选择最优拟合趋势。使用虚拟变量捕获周末和夜间的不同行为。得到的年、周、日趋势最后用于电力负荷预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信