A New Clutter Removal Method Based on Direct Robust Matrix Factorization for Buried Target Detection

D. Kumlu, I. Erer
{"title":"A New Clutter Removal Method Based on Direct Robust Matrix Factorization for Buried Target Detection","authors":"D. Kumlu, I. Erer","doi":"10.1109/TELFOR56187.2022.9983731","DOIUrl":null,"url":null,"abstract":"Clutter decreases severely the performance of target detection algorithms in ground-penetrating radar (GPR) imaging systems. Low rank and sparse decomposition (LRSD) methods divide the data into its clutter and target components by rank minimization with sparsity constraint. This paper proposes a direct solution for LRSD decomposition of the GPR data unlike robust principal component analysis (RPCA) which uses a nuclear norm relaxation. The non convex optimization problem is solved by successive partial singular value decompositions (SVD)s and soft thresholding operations and does not require any parameter computation. The visual and numerical comparisons for both simulated and real data show the superiority of the direct robust matrix factorization (DRMF) over the relaxation solution RPCA as well as over the traditional low rank methods SVD and PCA.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clutter decreases severely the performance of target detection algorithms in ground-penetrating radar (GPR) imaging systems. Low rank and sparse decomposition (LRSD) methods divide the data into its clutter and target components by rank minimization with sparsity constraint. This paper proposes a direct solution for LRSD decomposition of the GPR data unlike robust principal component analysis (RPCA) which uses a nuclear norm relaxation. The non convex optimization problem is solved by successive partial singular value decompositions (SVD)s and soft thresholding operations and does not require any parameter computation. The visual and numerical comparisons for both simulated and real data show the superiority of the direct robust matrix factorization (DRMF) over the relaxation solution RPCA as well as over the traditional low rank methods SVD and PCA.
一种基于直接鲁棒矩阵分解的地埋目标杂波去除新方法
在探地雷达成像系统中,杂波严重降低了目标检测算法的性能。低秩稀疏分解(LRSD)方法通过在稀疏性约束下的秩最小化将数据分解为杂波和目标分量。与使用核范数松弛的鲁棒主成分分析(RPCA)不同,本文提出了一种直接求解探地雷达数据LRSD分解的方法。该算法采用连续偏奇异值分解(SVD)和软阈值运算求解非凸优化问题,不需要任何参数计算。仿真和实际数据的视觉和数值对比表明,直接鲁棒矩阵分解(DRMF)优于松弛解RPCA,也优于传统的低秩SVD和PCA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信