Modified Multi-objective Particle Swarm Optimization for electromagnetic absorber design

S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli
{"title":"Modified Multi-objective Particle Swarm Optimization for electromagnetic absorber design","authors":"S. Chamaani, S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli","doi":"10.1109/APACE.2007.4603923","DOIUrl":null,"url":null,"abstract":"Use of multi-objective particle swarm optimization for designing of planar multilayered electromagnetic absorbers and finding optimal Pareto front is described. The achieved Pareto presents optimal possible trade offs between thickness and reflection coefficient of absorbers. Particle swarm optimization method in comparison with most of optimization algorithms such as genetic algorithms is simple and fast. But the basic form of multi-objective particle swarm optimization may not obtain the best Pareto. We applied some modifications to make it more efficient in finding optimal Pareto front. Comparison with reported results in previous articles confirms the ability of this algorithm in finding better solutions.","PeriodicalId":356424,"journal":{"name":"2007 Asia-Pacific Conference on Applied Electromagnetics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Asia-Pacific Conference on Applied Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APACE.2007.4603923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Use of multi-objective particle swarm optimization for designing of planar multilayered electromagnetic absorbers and finding optimal Pareto front is described. The achieved Pareto presents optimal possible trade offs between thickness and reflection coefficient of absorbers. Particle swarm optimization method in comparison with most of optimization algorithms such as genetic algorithms is simple and fast. But the basic form of multi-objective particle swarm optimization may not obtain the best Pareto. We applied some modifications to make it more efficient in finding optimal Pareto front. Comparison with reported results in previous articles confirms the ability of this algorithm in finding better solutions.
电磁吸收器设计的改进多目标粒子群算法
将多目标粒子群算法应用于平面多层电磁吸波器的设计及最优帕累托阵的求解。所获得的帕累托给出了吸收体厚度和反射系数之间的最佳折衷。粒子群优化方法与遗传算法等大多数优化算法相比,具有简单、快速的特点。但多目标粒子群优化的基本形式不一定能得到最优Pareto。我们进行了一些修改,使其更有效地寻找最优帕累托前。与以前文章中报道的结果进行比较,证实了该算法在寻找更好的解方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信