Li-Ion Batteries Remaining Useful Life Maximization through Model Predictive Control Based Optimal Charging

Walter Castagna, P. Fracas, S. Valtchev
{"title":"Li-Ion Batteries Remaining Useful Life Maximization through Model Predictive Control Based Optimal Charging","authors":"Walter Castagna, P. Fracas, S. Valtchev","doi":"10.1109/eGRID57376.2022.9990012","DOIUrl":null,"url":null,"abstract":"The existing Battery Management Systems (BMS) use empirical equivalent circuits, not reflecting the real Lithium-Ion cell electro-chemical dynamics, thus limiting the accurate estimation of the cell state and hence, not providing a good prevision of the cell’s Remaining Useful Life (RUL). This work proposes an innovative model-based method to minimize the electrochemical degradation of the Li-Ion cells. The method is applied in a Model Predictive Control (MPC), embedded in the microcontroller of the BMS. The MPC-based algorithm is maximizing the life of the cell’s digital-twin. This optimized management of the charging and discharging current, shows a reduction of the Solid Electrolyte Interface (SEI) growth by 30% to 40% and almost suppress the lithium plating compared with classical Constant-Current Constant-Voltage (CCCV) charging. As a conclusion, the new method promises longer use of the lithium batteries, especially for the energy storage in the modern and future Power Grids and Microgrids.","PeriodicalId":421600,"journal":{"name":"2022 7th IEEE Workshop on the Electronic Grid (eGRID)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th IEEE Workshop on the Electronic Grid (eGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eGRID57376.2022.9990012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing Battery Management Systems (BMS) use empirical equivalent circuits, not reflecting the real Lithium-Ion cell electro-chemical dynamics, thus limiting the accurate estimation of the cell state and hence, not providing a good prevision of the cell’s Remaining Useful Life (RUL). This work proposes an innovative model-based method to minimize the electrochemical degradation of the Li-Ion cells. The method is applied in a Model Predictive Control (MPC), embedded in the microcontroller of the BMS. The MPC-based algorithm is maximizing the life of the cell’s digital-twin. This optimized management of the charging and discharging current, shows a reduction of the Solid Electrolyte Interface (SEI) growth by 30% to 40% and almost suppress the lithium plating compared with classical Constant-Current Constant-Voltage (CCCV) charging. As a conclusion, the new method promises longer use of the lithium batteries, especially for the energy storage in the modern and future Power Grids and Microgrids.
基于模型预测控制的锂离子电池最优充电的剩余使用寿命最大化
现有的电池管理系统(BMS)使用经验等效电路,不能反映真实的锂离子电池电化学动力学,从而限制了对电池状态的准确估计,因此,不能很好地预测电池的剩余使用寿命(RUL)。这项工作提出了一种创新的基于模型的方法来最小化锂离子电池的电化学降解。该方法已应用于BMS微控制器中的模型预测控制(MPC)。基于mpc的算法最大限度地延长了手机数字孪生体的寿命。与传统的恒流恒压(CCCV)充电相比,这种优化的充放电电流管理表明,固体电解质界面(SEI)的生长减少了30%至40%,几乎抑制了锂的电镀。总之,这种新方法有望延长锂电池的使用寿命,特别是在现代和未来的电网和微电网的储能方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信