{"title":"Superhuman Performance in Tactile Material Classification and Differentiation with a Flexible Pressure-Sensitive Skin","authors":"A. Tulbure, B. Bäuml","doi":"10.1109/HUMANOIDS.2018.8624987","DOIUrl":null,"url":null,"abstract":"In this paper, we show that a robot equipped with a flexible and commercially available tactile skin can exceed human performance in the challenging tasks of material classification, i.e., uniquely identifying a given material by touch alone, and of material differentiation, i.e., deciding if the materials in a given pair of materials are the same or different. For processing the high dimensional spatio-temporal tactile signal, we use a new tactile deep learning network architecture TactNet-II which is based on TactNet [1] and is significantly extended with recently described architectural enhancements and training methods. TactN et- Iireaches an accuracy for the material classification task as high as 95.0 %. For the material differentiation a new Siamese network based architecture is presented which reaches an accuracy as high as 95.4 %. All the results have been achieved on a new challenging dataset of 36 everyday household materials. In a thorough human performance experiment with 15 subjects we show that the human performance is significantly lower than the robot's performance for both tactile tasks.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, we show that a robot equipped with a flexible and commercially available tactile skin can exceed human performance in the challenging tasks of material classification, i.e., uniquely identifying a given material by touch alone, and of material differentiation, i.e., deciding if the materials in a given pair of materials are the same or different. For processing the high dimensional spatio-temporal tactile signal, we use a new tactile deep learning network architecture TactNet-II which is based on TactNet [1] and is significantly extended with recently described architectural enhancements and training methods. TactN et- Iireaches an accuracy for the material classification task as high as 95.0 %. For the material differentiation a new Siamese network based architecture is presented which reaches an accuracy as high as 95.4 %. All the results have been achieved on a new challenging dataset of 36 everyday household materials. In a thorough human performance experiment with 15 subjects we show that the human performance is significantly lower than the robot's performance for both tactile tasks.