Aadam

S. M. Ebrahimipour, B. Ghavami, Hamid Mousavi, Mohsen Raji, Zhenman Fang, Lesley Shannon
{"title":"Aadam","authors":"S. M. Ebrahimipour, B. Ghavami, Hamid Mousavi, Mohsen Raji, Zhenman Fang, Lesley Shannon","doi":"10.1145/3400302.3415605","DOIUrl":null,"url":null,"abstract":"With the CMOS technology scaling, transistor aging has become one major issue affecting circuit reliability and lifetime. There are two major classes of existing studies that model the aging effects in the circuit delay. One is at transistor-level, which is highly accurate but very slow. The other is at gate-level, which is faster but less accurate. Moreover, most prior studies only consider a limited subset or limited value ranges of aging factors. In this paper, we propose Aadam, a fast, accurate, and versatile aging-aware delay model for generic cell libraries. In Aadam, we first use transistor-level SPICE simulations to accurately characterize the delay degradation of each library cell under a versatile set of aging factors, including both physical parameters (i.e., initial threshold voltage and transistor width/length ratio) and operating conditions (i.e., working temperature, signal probability, input signal slew range, output load capacitance range, and projected lifetime). For each library cell, we then train a feed-forward neural network (FFNN) to learn the relation between the input aging factors and output cell delay degradation. Therefore, for a given input circuit and a given combination of aging factors, we can use the trained FFNNs to quickly and accurately infer the delay degradation for each gate in the circuit. Finally, to effectively estimate the aging-aware lifetime delay of large-scale circuits, we also integrate Aadam into a state-of-the-art static timing analysis tool called OpenTimer. Experimental results demonstrate that Aadam achieves fast estimation of the aging-induced delay with high accuracy close to transistor-level simulation.","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the CMOS technology scaling, transistor aging has become one major issue affecting circuit reliability and lifetime. There are two major classes of existing studies that model the aging effects in the circuit delay. One is at transistor-level, which is highly accurate but very slow. The other is at gate-level, which is faster but less accurate. Moreover, most prior studies only consider a limited subset or limited value ranges of aging factors. In this paper, we propose Aadam, a fast, accurate, and versatile aging-aware delay model for generic cell libraries. In Aadam, we first use transistor-level SPICE simulations to accurately characterize the delay degradation of each library cell under a versatile set of aging factors, including both physical parameters (i.e., initial threshold voltage and transistor width/length ratio) and operating conditions (i.e., working temperature, signal probability, input signal slew range, output load capacitance range, and projected lifetime). For each library cell, we then train a feed-forward neural network (FFNN) to learn the relation between the input aging factors and output cell delay degradation. Therefore, for a given input circuit and a given combination of aging factors, we can use the trained FFNNs to quickly and accurately infer the delay degradation for each gate in the circuit. Finally, to effectively estimate the aging-aware lifetime delay of large-scale circuits, we also integrate Aadam into a state-of-the-art static timing analysis tool called OpenTimer. Experimental results demonstrate that Aadam achieves fast estimation of the aging-induced delay with high accuracy close to transistor-level simulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信