Sub-0.25-micron interconnection scaling: damascene copper versus subtractive aluminum

Anthony K. Stamper, T. McDevitt, S. L. Luce
{"title":"Sub-0.25-micron interconnection scaling: damascene copper versus subtractive aluminum","authors":"Anthony K. Stamper, T. McDevitt, S. L. Luce","doi":"10.1109/ASMC.1998.731585","DOIUrl":null,"url":null,"abstract":"Historically, the semiconductor industry has made chip speed the focus of its high performance CMOS logic development strategy. For the wires and insulators used in the back-end-of-the-line (BEOL), this has driven the industry to use damascene tungsten chemical-mechanical polish (CMP) local interconnects and vias; SiO/sub 2/-based intermetal dielectric CMP planarization; high-aspect ratio aluminum wiring; high density plasma, ozone/TEOS, or advanced spin-on glass SiO/sub 2/ intermetal dielectrics; high density plasma reactive ion etching; and excimer-laser DUV lithography. In order to achieve 0.25 /spl mu/m CMOS performance objectives, the aluminum wire and tungsten via aspect ratios have increased by about a factor of two as compared to 0.50 /spl mu/m CMOS. This aggressive reverse scaling of BEOL dimensions increases the defect and yield issues associated with the industry standard subtractive-aluminum etch process. We believe that, if subtractive-aluminum wiring is used, the additional scaling required to meet the performance targets of sub-0.25 /spl mu/m CMOS logic will result in significantly lower yields and increased manufacturing costs. Rather than attempt to drive subtractive-aluminum wiring beyond its reasonable limits, IBM has chosen to employ an additive-copper dual-damascene wiring process for its high performance sub-0.25 /spl mu/m CMOS logic technologies. In this paper, we discuss defect density, resistance variability, and capacitance variability for 0.25 /spl mu/m and 0.18 /spl mu/m CMOS generation subtractive-aluminum and damascene copper wiring.","PeriodicalId":290016,"journal":{"name":"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/SEMI 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (Cat. No.98CH36168)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.1998.731585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Historically, the semiconductor industry has made chip speed the focus of its high performance CMOS logic development strategy. For the wires and insulators used in the back-end-of-the-line (BEOL), this has driven the industry to use damascene tungsten chemical-mechanical polish (CMP) local interconnects and vias; SiO/sub 2/-based intermetal dielectric CMP planarization; high-aspect ratio aluminum wiring; high density plasma, ozone/TEOS, or advanced spin-on glass SiO/sub 2/ intermetal dielectrics; high density plasma reactive ion etching; and excimer-laser DUV lithography. In order to achieve 0.25 /spl mu/m CMOS performance objectives, the aluminum wire and tungsten via aspect ratios have increased by about a factor of two as compared to 0.50 /spl mu/m CMOS. This aggressive reverse scaling of BEOL dimensions increases the defect and yield issues associated with the industry standard subtractive-aluminum etch process. We believe that, if subtractive-aluminum wiring is used, the additional scaling required to meet the performance targets of sub-0.25 /spl mu/m CMOS logic will result in significantly lower yields and increased manufacturing costs. Rather than attempt to drive subtractive-aluminum wiring beyond its reasonable limits, IBM has chosen to employ an additive-copper dual-damascene wiring process for its high performance sub-0.25 /spl mu/m CMOS logic technologies. In this paper, we discuss defect density, resistance variability, and capacitance variability for 0.25 /spl mu/m and 0.18 /spl mu/m CMOS generation subtractive-aluminum and damascene copper wiring.
低于0.25微米的互连缩放:大马士革铜与减法铝
从历史上看,半导体行业一直将芯片速度作为其高性能CMOS逻辑发展战略的重点。对于线路后端(BEOL)中使用的电线和绝缘体,这促使行业使用damascene钨化学机械抛光(CMP)本地互连和过孔;SiO/sub - 2基金属间介质CMP平面化高纵横比铝线;高密度等离子体、臭氧/TEOS或先进的自旋玻璃SiO/ sub2 /金属间介电体;高密度等离子体反应离子蚀刻;和准激光DUV光刻。为了达到0.25 /spl mu/m的CMOS性能目标,铝线和钨线的宽高比与0.50 /spl mu/m的CMOS相比增加了大约两倍。这种积极的BEOL尺寸的反向缩放增加了与行业标准减法铝蚀刻工艺相关的缺陷和良率问题。我们认为,如果使用减铝布线,为满足低于0.25 /spl μ m CMOS逻辑的性能目标所需的额外缩放将导致显着降低产量并增加制造成本。IBM并没有试图将减法铝布线推向其合理的极限,而是选择采用增材铜双damascene布线工艺来实现其性能低于0.25 /spl mu/m的CMOS逻辑技术。在本文中,我们讨论了0.25 /spl mu/m和0.18 /spl mu/m CMOS代减法铝和damascene铜线的缺陷密度、电阻变异性和电容变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信