Integrating structural and functional brain connectivity image, signal, and data processing problems

G. Baselli, N. Bergsland, Isa Costantini, O. Dipasquale, E. Scaccianoce, M. Laganà, L. Pelizzari, M. Clerici, F. Baglio
{"title":"Integrating structural and functional brain connectivity image, signal, and data processing problems","authors":"G. Baselli, N. Bergsland, Isa Costantini, O. Dipasquale, E. Scaccianoce, M. Laganà, L. Pelizzari, M. Clerici, F. Baglio","doi":"10.1109/AEIT.2015.7415273","DOIUrl":null,"url":null,"abstract":"Resting state (RS) functional magnetic resonance images (rsfMRI) were analyzed by spatial independent component analysis (sICA). Functional connectivity (FC) was further analyzed within the identified RS networks either by high dimension sICA or by local clustering. The latter approach permitted to drive a matched structural connectivity (SC) based on probabilistic tractography between the same clusters. Cortex segmentation tools ad diffusion MRI were used to correlate fiber and cortical damage. Methods and results are here compared concerning the translational fall-outs and the applicability in the evaluation and follow-up of neurodegenerative diseases. Emphasis is given to the integration of image, signal, and data processing methods.","PeriodicalId":368119,"journal":{"name":"2015 AEIT International Annual Conference (AEIT)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEIT.2015.7415273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resting state (RS) functional magnetic resonance images (rsfMRI) were analyzed by spatial independent component analysis (sICA). Functional connectivity (FC) was further analyzed within the identified RS networks either by high dimension sICA or by local clustering. The latter approach permitted to drive a matched structural connectivity (SC) based on probabilistic tractography between the same clusters. Cortex segmentation tools ad diffusion MRI were used to correlate fiber and cortical damage. Methods and results are here compared concerning the translational fall-outs and the applicability in the evaluation and follow-up of neurodegenerative diseases. Emphasis is given to the integration of image, signal, and data processing methods.
整合结构和功能脑连接图像,信号和数据处理问题
采用空间独立分量分析(sICA)对静息状态(RS)功能磁共振图像(rsfMRI)进行分析。通过高维sICA或局部聚类进一步分析了识别的RS网络的功能连通性(FC)。后一种方法允许驱动匹配的结构连通性(SC)基于概率轨迹图之间的相同簇。使用皮质分割工具和弥散MRI来关联纤维和皮质损伤。本文比较了两种方法和结果在神经退行性疾病评价和随访中的适用性。重点是图像、信号和数据处理方法的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信