Neural Network – based Sensitivity Analysis of the Factors affecting the Solar Photovoltaic Power Output

Jordan N. Velasco, Roel D. Trinidad, Ronnie Z. Ramos, K. L. D. de Jesus
{"title":"Neural Network – based Sensitivity Analysis of the Factors affecting the Solar Photovoltaic Power Output","authors":"Jordan N. Velasco, Roel D. Trinidad, Ronnie Z. Ramos, K. L. D. de Jesus","doi":"10.1109/I2CACIS57635.2023.10193378","DOIUrl":null,"url":null,"abstract":"Technological advancements and modernization of different industries and disciplines contributed to more consumption of oil and electricity which powers these industries. Aligned with the United Nations (UN) Sustainable Development Goals (SDG), the use of alternative and renewable energy (RE) sources is encouraged as it allows the utilization of clean energy resources and access of populations in developing countries to electricity and energy. Forecasting and maximizing the harvest for renewable energy requires an understanding of the mechanics behind the variables that impact solar photovoltaic production. 755 datasets were created from 150 days of recorded data and used in the model building and sensitivity analysis. The approach used in this study to identify the variable importance of each meteorological variable to the solar photovoltaic (PV) production was the Garson’s algorithm (GA). In this study, an artificial neural network (ANN)-based sensitivity analysis (SA) using Garson’s algorithm (GA) was implemented to identify the relative importance (RI) of the factors influencing the solar PV output including the solar irradiance (SI), rainfall, maximum temperature (MaT), minimum temperature (MiT), relative humidity (RH), and wind speed (WS). The model also considers the relative significance of these parameters to the solar PV output. Results indicate that, with a relative value of 29.48% and 5.01%, respectively, solar irradiance and wind speed are the most and least important factors.","PeriodicalId":244595,"journal":{"name":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS57635.2023.10193378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Technological advancements and modernization of different industries and disciplines contributed to more consumption of oil and electricity which powers these industries. Aligned with the United Nations (UN) Sustainable Development Goals (SDG), the use of alternative and renewable energy (RE) sources is encouraged as it allows the utilization of clean energy resources and access of populations in developing countries to electricity and energy. Forecasting and maximizing the harvest for renewable energy requires an understanding of the mechanics behind the variables that impact solar photovoltaic production. 755 datasets were created from 150 days of recorded data and used in the model building and sensitivity analysis. The approach used in this study to identify the variable importance of each meteorological variable to the solar photovoltaic (PV) production was the Garson’s algorithm (GA). In this study, an artificial neural network (ANN)-based sensitivity analysis (SA) using Garson’s algorithm (GA) was implemented to identify the relative importance (RI) of the factors influencing the solar PV output including the solar irradiance (SI), rainfall, maximum temperature (MaT), minimum temperature (MiT), relative humidity (RH), and wind speed (WS). The model also considers the relative significance of these parameters to the solar PV output. Results indicate that, with a relative value of 29.48% and 5.01%, respectively, solar irradiance and wind speed are the most and least important factors.
基于神经网络的太阳能光伏发电出力影响因素敏感性分析
不同行业和学科的技术进步和现代化促进了更多的石油和电力消费,这为这些行业提供了动力。与联合国(UN)可持续发展目标(SDG)一致,鼓励使用替代能源和可再生能源(RE),因为它可以利用清洁能源,并使发展中国家的人口获得电力和能源。预测和最大化可再生能源的收获需要了解影响太阳能光伏生产的变量背后的机制。从150天的记录数据中创建了755个数据集,并用于模型构建和敏感性分析。本研究使用Garson算法(GA)来确定每个气象变量对太阳能光伏(PV)生产的变量重要性。本研究采用Garson算法(GA),基于人工神经网络(ANN)的敏感性分析(SA)来识别影响太阳能光伏输出的因素,包括太阳辐照度(SI)、降雨量、最高温度(MaT)、最低温度(MiT)、相对湿度(RH)和风速(WS)的相对重要性(RI)。该模型还考虑了这些参数对太阳能光伏输出的相对重要性。结果表明,太阳辐照度和风速是影响影响最大和最不重要的因素,相对影响值分别为29.48%和5.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信