Module Intersection for the Integration-by-Parts Reduction of Multi-Loop Feynman Integrals

Dominik Bendle, J. Boehm, W. Decker, A. Georgoudis, F. Pfreundt, M. Rahn, Y. Zhang
{"title":"Module Intersection for the Integration-by-Parts Reduction of Multi-Loop Feynman Integrals","authors":"Dominik Bendle, J. Boehm, W. Decker, A. Georgoudis, F. Pfreundt, M. Rahn, Y. Zhang","doi":"10.22323/1.383.0004","DOIUrl":null,"url":null,"abstract":"In this manuscript, which is to appear in the proceedings of the conference \"MathemAmplitude 2019\" in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.","PeriodicalId":173323,"journal":{"name":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals — PoS(MA2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.383.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this manuscript, which is to appear in the proceedings of the conference "MathemAmplitude 2019" in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.
多环Feynman积分分部积分化简的模交
在这篇将出现在意大利帕多瓦“2019年数学振幅”会议记录中的论文中,我们概述了用于多环费曼积分的分段积分(IBP)约简的模块相交方法。基于计算代数几何的模交法是求解无双传播子或有最高传播子度界的IBP关系的一种高效方法。通过这种方式,可以获得比传统IBP系统短得多的精简IBP系统。将基于Petri网的现代工作流管理系统GPI-Space与计算机代数系统Singular相结合,通过插值和高效并行化的方法对裁剪后的IBP系统进行求解。我们特别展示了如何使用GPI-Space的新插件特性来管理计算的全局状态并有效地处理可变数据。此外,本文还提出了一个基于模块交集的Mathematica接口,用于生成具有受限传播度的ibp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信