Noise Reduction and Image Sharpening Using IJA Cellular Learning Automaton

A. Nooraliei, R. Iraji
{"title":"Noise Reduction and Image Sharpening Using IJA Cellular Learning Automaton","authors":"A. Nooraliei, R. Iraji","doi":"10.1109/ICCRD.2010.175","DOIUrl":null,"url":null,"abstract":"This paper utilizes IJA stochastic learning automaton for detecting noise and tuning value of alpha parameter which is used for image sharpening via gas diffusion model. The method has been applied to gray-scale images in an automatic and adaptive fashion. It is shown that the IJA automaton detects noise and can reform it appropriately. It glides the image to find the pattern of noise and replace it by the relevant characteristics of neighborhood to carry out the local restoration. Then, the automaton makes the image sharp with gas diffusion model by learning alpha parameter. The IJA automaton calculates appropriate local value for each pixel. Finally, experiments are presented and comparisons with other common used techniques are introduced which illustrate the proposed approach produces excellent results for the problem of restoring gray-scale images.","PeriodicalId":158568,"journal":{"name":"2010 Second International Conference on Computer Research and Development","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRD.2010.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper utilizes IJA stochastic learning automaton for detecting noise and tuning value of alpha parameter which is used for image sharpening via gas diffusion model. The method has been applied to gray-scale images in an automatic and adaptive fashion. It is shown that the IJA automaton detects noise and can reform it appropriately. It glides the image to find the pattern of noise and replace it by the relevant characteristics of neighborhood to carry out the local restoration. Then, the automaton makes the image sharp with gas diffusion model by learning alpha parameter. The IJA automaton calculates appropriate local value for each pixel. Finally, experiments are presented and comparisons with other common used techniques are introduced which illustrate the proposed approach produces excellent results for the problem of restoring gray-scale images.
使用IJA元胞学习自动机的降噪和图像锐化
本文利用IJA随机学习自动机检测噪声和调节alpha参数值,并通过气体扩散模型对图像进行锐化。该方法已应用于灰度图像的自动和自适应方式。结果表明,IJA自动机能够检测噪声并对噪声进行适当的改造。它对图像进行滑动,找到噪声的模式,并用邻域的相关特征代替噪声进行局部恢复。然后,自动机通过学习alpha参数,利用气体扩散模型对图像进行锐化处理。IJA自动机为每个像素计算适当的局部值。最后,给出了实验结果,并与其他常用技术进行了比较,表明该方法在灰度图像恢复问题上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信