STOCK PRICE PREDICTION USING SUPPORT VECTOR REGRESSION AND K-NEAREST NEIGHBORS: A COMPARISON

Madhumita Ghosh, Ravi Gor
{"title":"STOCK PRICE PREDICTION USING SUPPORT VECTOR REGRESSION AND K-NEAREST NEIGHBORS: A COMPARISON","authors":"Madhumita Ghosh, Ravi Gor","doi":"10.29121/ijoest.v6.i4.2022.354","DOIUrl":null,"url":null,"abstract":"Supervised Learning is an important type of Machine learning. It includes regression and classification problems. In Supervised learning, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) can be used for classification and regression. Here, both algorithms are used for regression problem. The stock data is trained by SVR and KNN respectively to predict the stock price of the next day using python tool. Both algorithms are compared and it is observed that the price predicted by SVR is closer as compared to KNN.","PeriodicalId":331301,"journal":{"name":"International Journal of Engineering Science Technologies","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijoest.v6.i4.2022.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised Learning is an important type of Machine learning. It includes regression and classification problems. In Supervised learning, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) can be used for classification and regression. Here, both algorithms are used for regression problem. The stock data is trained by SVR and KNN respectively to predict the stock price of the next day using python tool. Both algorithms are compared and it is observed that the price predicted by SVR is closer as compared to KNN.
股票价格预测使用支持向量回归和k近邻:比较
监督学习是机器学习的一种重要类型。它包括回归和分类问题。在监督学习中,支持向量机(SVM)和k近邻(KNN)可以用于分类和回归。在这里,这两种算法都用于回归问题。股票数据分别通过SVR和KNN进行训练,使用python工具预测第二天的股票价格。对两种算法进行了比较,观察到SVR预测的价格比KNN更接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信