Design, Modeling and Control of a Biologically-Inspired Bat Robot: Plenary Talk

S. Hutchinson
{"title":"Design, Modeling and Control of a Biologically-Inspired Bat Robot: Plenary Talk","authors":"S. Hutchinson","doi":"10.1109/IWOBI47054.2019.9114480","DOIUrl":null,"url":null,"abstract":"In this talk, I will describe our recent progress building a biologically-inspired bat robot. Bats have a complex skeletal morphology, with both ball-and-socket and revolute joints that interconnect the bones and muscles to create a musculoskeletal system with over 40 degrees of freedom, some of which are passive. Replicating this biological system in a small, lightweight, low-power air vehicle is not only infeasible, but also undesirable; trajectory planning and control for such a system would be intractable, precluding any possibility for synthesizing complex agile maneuvers, or for real-time control. Thus, our goal is to design a robot whose kinematic structure is topologically much simpler than a bat's, while still providing the ability to mimic the bat-wing morphology during flapping flight, and to find optimal trajectories that exploit the natural system dynamics, enabling effective controller design.","PeriodicalId":427695,"journal":{"name":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI47054.2019.9114480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this talk, I will describe our recent progress building a biologically-inspired bat robot. Bats have a complex skeletal morphology, with both ball-and-socket and revolute joints that interconnect the bones and muscles to create a musculoskeletal system with over 40 degrees of freedom, some of which are passive. Replicating this biological system in a small, lightweight, low-power air vehicle is not only infeasible, but also undesirable; trajectory planning and control for such a system would be intractable, precluding any possibility for synthesizing complex agile maneuvers, or for real-time control. Thus, our goal is to design a robot whose kinematic structure is topologically much simpler than a bat's, while still providing the ability to mimic the bat-wing morphology during flapping flight, and to find optimal trajectories that exploit the natural system dynamics, enabling effective controller design.
生物启发蝙蝠机器人的设计、建模与控制:全体会议
在这次演讲中,我将描述我们最近的进展,建立一个受生物启发的蝙蝠机器人。蝙蝠有复杂的骨骼形态,既有球窝关节,也有旋转关节,它们将骨骼和肌肉相互连接,形成一个有40多个自由度的肌肉骨骼系统,其中一些是被动的。在一个小、轻、低功率的飞行器上复制这个生物系统不仅是不可行的,而且也是不可取的;这样一个系统的轨迹规划和控制将是棘手的,排除了综合复杂敏捷机动或实时控制的任何可能性。因此,我们的目标是设计一种机器人,其运动学结构在拓扑学上比蝙蝠的结构简单得多,同时仍然提供模仿蝙蝠扑翼飞行时翅膀形态的能力,并找到利用自然系统动力学的最佳轨迹,从而实现有效的控制器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信