Short-term visual mapping and robot localization based on learning classifier systems and self-organizing maps

A. M. Neto
{"title":"Short-term visual mapping and robot localization based on learning classifier systems and self-organizing maps","authors":"A. M. Neto","doi":"10.1109/IVS.2015.7225692","DOIUrl":null,"url":null,"abstract":"Ground wheeled autonomous robots like driverless cars are examples of applications which would assist humans on different tasks. From an explicit or emerging need, these systems have come to replace or assist drivers. Estimating the position is a primary function for intelligent vehicle navigation. Different existing solutions use high-end sensors. This paper proposes to augment the autonomy level of a mobile robot based on learning classifier systems and self-organizing maps. From a simple monocular system, whilst the classifier system leads the robot for topological localization tasks, the neural network is applied as a short-term visual memory for internal representation of the environment. These two concepts are presented as separate approaches, wherein each method performs a specific task for the robot's trajectory control.","PeriodicalId":144087,"journal":{"name":"International Conference on Information Visualisation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ground wheeled autonomous robots like driverless cars are examples of applications which would assist humans on different tasks. From an explicit or emerging need, these systems have come to replace or assist drivers. Estimating the position is a primary function for intelligent vehicle navigation. Different existing solutions use high-end sensors. This paper proposes to augment the autonomy level of a mobile robot based on learning classifier systems and self-organizing maps. From a simple monocular system, whilst the classifier system leads the robot for topological localization tasks, the neural network is applied as a short-term visual memory for internal representation of the environment. These two concepts are presented as separate approaches, wherein each method performs a specific task for the robot's trajectory control.
基于学习分类器系统和自组织地图的短期视觉映射和机器人定位
像无人驾驶汽车这样的地面轮式自动机器人就是帮助人类完成不同任务的应用例子。从一个明确的或新兴的需求,这些系统已经取代或辅助司机。位置估计是智能车辆导航的主要功能之一。不同的现有解决方案使用高端传感器。本文提出了一种基于学习分类器系统和自组织地图来增强移动机器人自治水平的方法。从一个简单的单目系统,当分类器系统引导机器人进行拓扑定位任务时,神经网络被用作短期视觉记忆,用于内部环境表征。这两个概念作为单独的方法提出,其中每种方法执行机器人轨迹控制的特定任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信