Composite Multi-Vector Model Predictive Control for Permanent Magnet Synchronous Motor

Lin Gao, Tianhong Pan
{"title":"Composite Multi-Vector Model Predictive Control for Permanent Magnet Synchronous Motor","authors":"Lin Gao, Tianhong Pan","doi":"10.1109/DDCLS58216.2023.10167075","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) has been widely used in the permanent magnet synchronous motor. However, in the finite control set MPC, only one voltage vector is applied, which leads to high current harmonics and torque fluctuations. Meanwhile, three-vector MPC inevitably increases the switching frequency of inverter. In this article, a multi-vector switching control approach is established. Based on the location information of the created reference voltage vector, the relevant control technique is implemented. The proposed control method with single-vector, two-vector and three-vector composite modes of action is designed to achieve low switching frequency with excellent steady-state performance. The proposed method's effectiveness is confirmed by the experimental results.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10167075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model Predictive Control (MPC) has been widely used in the permanent magnet synchronous motor. However, in the finite control set MPC, only one voltage vector is applied, which leads to high current harmonics and torque fluctuations. Meanwhile, three-vector MPC inevitably increases the switching frequency of inverter. In this article, a multi-vector switching control approach is established. Based on the location information of the created reference voltage vector, the relevant control technique is implemented. The proposed control method with single-vector, two-vector and three-vector composite modes of action is designed to achieve low switching frequency with excellent steady-state performance. The proposed method's effectiveness is confirmed by the experimental results.
永磁同步电机复合多向量模型预测控制
模型预测控制(MPC)在永磁同步电机中得到了广泛应用。然而,在有限控制集MPC中,只施加一个电压矢量,这会导致高电流谐波和转矩波动。同时,三矢量MPC不可避免地提高了逆变器的开关频率。本文建立了一种多矢量切换控制方法。基于所创建的参考电压矢量的位置信息,实现了相应的控制技术。所提出的控制方法采用单矢量、双矢量和三矢量复合作用模式,以实现低开关频率和优异的稳态性能。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信