Option Pricing on the GPU with Backward Stochastic Differential Equation

Ying Peng, Bin Gong, Hui Liu, Bin Dai
{"title":"Option Pricing on the GPU with Backward Stochastic Differential Equation","authors":"Ying Peng, Bin Gong, Hui Liu, Bin Dai","doi":"10.1109/PAAP.2011.12","DOIUrl":null,"url":null,"abstract":"In this paper, we develop acceleration strategies for option pricing with non-linear Backward Stochastic Differential Equation (BSDE), which appears as a robust and valuable tool in financial markets. An efficient binomial lattice based method is adopted to solve the BSDE numerically. In order to reduce the global memory access frequency, the kernel invocation is avoided to be performed on each time step. Furthermore, for evaluating the affect of load balance to the performance, we provide two different acceleration strategies and compare them with running time experiments. The acceleration algorithms exhibit tremendous speedup over the sequential CPU implementation and therefore suitable for real-time application.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we develop acceleration strategies for option pricing with non-linear Backward Stochastic Differential Equation (BSDE), which appears as a robust and valuable tool in financial markets. An efficient binomial lattice based method is adopted to solve the BSDE numerically. In order to reduce the global memory access frequency, the kernel invocation is avoided to be performed on each time step. Furthermore, for evaluating the affect of load balance to the performance, we provide two different acceleration strategies and compare them with running time experiments. The acceleration algorithms exhibit tremendous speedup over the sequential CPU implementation and therefore suitable for real-time application.
基于倒向随机微分方程的GPU期权定价
本文提出了一种基于非线性倒向随机微分方程(BSDE)的期权定价加速策略,该策略在金融市场上具有鲁棒性和价值。采用一种高效的基于二项式格的方法对BSDE进行数值求解。为了降低全局内存访问频率,避免在每个时间步上执行内核调用。此外,为了评估负载平衡对性能的影响,我们提供了两种不同的加速策略,并与运行时实验进行了比较。该加速算法比顺序CPU实现具有巨大的加速性能,因此适合于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信