Improved sparse representation based on robust principal component analysis for face recognition

Yi-Fu Hou, Wen-Juan Pei, Yan Zhang, C. Zheng
{"title":"Improved sparse representation based on robust principal component analysis for face recognition","authors":"Yi-Fu Hou, Wen-Juan Pei, Yan Zhang, C. Zheng","doi":"10.1109/ICICIP.2014.7010341","DOIUrl":null,"url":null,"abstract":"In this paper, we integrate Robust Principal Component Analysis (Robust PCA) and eigenface extraction into the sparse representation based classification. Firstly, the low-rank images are extracted by applying Robust PCA to make the training images as pure as possible. Then, Singular Value Decomposition (SVD) is adopted to extract the eigenfaces from the low-rank images. Finally, we combine these eigenfaces to construct a compact but discriminative dictionary for sparse representation. We evaluate our algorithm on several popular databases, experimental results demonstrate the effectiveness and robustness of our algorithm.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we integrate Robust Principal Component Analysis (Robust PCA) and eigenface extraction into the sparse representation based classification. Firstly, the low-rank images are extracted by applying Robust PCA to make the training images as pure as possible. Then, Singular Value Decomposition (SVD) is adopted to extract the eigenfaces from the low-rank images. Finally, we combine these eigenfaces to construct a compact but discriminative dictionary for sparse representation. We evaluate our algorithm on several popular databases, experimental results demonstrate the effectiveness and robustness of our algorithm.
基于鲁棒主成分分析的改进稀疏表示人脸识别
在本文中,我们将鲁棒主成分分析(Robust Principal Component Analysis,简称Robust PCA)和特征面提取集成到基于稀疏表示的分类中。首先,采用鲁棒主成分分析法提取低秩图像,使训练图像尽可能纯净;然后,采用奇异值分解(SVD)从低秩图像中提取特征面;最后,我们将这些特征面组合成一个紧凑但有区别的字典,用于稀疏表示。我们在几个常用的数据库上对算法进行了测试,实验结果证明了算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信