Speeding-up CNN inference through dimensionality reduction

Lucas Fernández Brillet, N. Leclaire, S. Mancini, Sébastien Cleyet-Merle, M. Nicolas, Jean-Paul Henriques, C. Delnondedieu
{"title":"Speeding-up CNN inference through dimensionality reduction","authors":"Lucas Fernández Brillet, N. Leclaire, S. Mancini, Sébastien Cleyet-Merle, M. Nicolas, Jean-Paul Henriques, C. Delnondedieu","doi":"10.1109/DASIP48288.2019.9049204","DOIUrl":null,"url":null,"abstract":"Computational complexity of CNNs makes their integration in embedded systems with low power consumption requirements a challenging task, which requires the joint design and adaptation of hardware and algorithms. In this paper, we propose a new general CNN compression method, allowing to reduce both the number of parameters and operations. This method is applied to a binary face detection network which is then implemented and evaluated on hardware.","PeriodicalId":120855,"journal":{"name":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP48288.2019.9049204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational complexity of CNNs makes their integration in embedded systems with low power consumption requirements a challenging task, which requires the joint design and adaptation of hardware and algorithms. In this paper, we propose a new general CNN compression method, allowing to reduce both the number of parameters and operations. This method is applied to a binary face detection network which is then implemented and evaluated on hardware.
通过降维加速CNN推理
cnn的计算复杂性使得其在低功耗嵌入式系统中的集成成为一项具有挑战性的任务,这需要硬件和算法的联合设计和适应。在本文中,我们提出了一种新的通用CNN压缩方法,允许减少参数和操作的数量。将该方法应用于一个二值人脸检测网络,并在硬件上进行了实现和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信