Chaos Quantum Clonal Multiobjective Evolutionary Algorithm

She Xiangyang, Zhu Minghao
{"title":"Chaos Quantum Clonal Multiobjective Evolutionary Algorithm","authors":"She Xiangyang, Zhu Minghao","doi":"10.1109/ANTHOLOGY.2013.6784763","DOIUrl":null,"url":null,"abstract":"Based on the ergodicity of chaotic searching, the efficiency of quantum computing and antibody clonal selection theory of Artificial Immune System (AIS), Chaos Quantum Clonal Multiobjective Evolutionary Algorithm (CQCMEA) is proposed in this paper. The algorithm encodes the initial population by qubit, updates individual by quantum rotated gates with chaotic variables and maintains the distribution and diversity of solutions by crowding distance. Theoretical analysis and experimental simulation proved the effectiveness of the algorithm.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the ergodicity of chaotic searching, the efficiency of quantum computing and antibody clonal selection theory of Artificial Immune System (AIS), Chaos Quantum Clonal Multiobjective Evolutionary Algorithm (CQCMEA) is proposed in this paper. The algorithm encodes the initial population by qubit, updates individual by quantum rotated gates with chaotic variables and maintains the distribution and diversity of solutions by crowding distance. Theoretical analysis and experimental simulation proved the effectiveness of the algorithm.
混沌量子克隆多目标进化算法
基于混沌搜索的遍历性、量子计算的效率和人工免疫系统抗体克隆选择理论,提出了混沌量子克隆多目标进化算法(CQCMEA)。该算法利用量子比特对初始种群进行编码,利用具有混沌变量的量子旋转门对个体进行更新,并利用拥挤距离保持解的分布和多样性。理论分析和实验仿真证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信