Use of Semantic Enhancements to NLP of Image Captions to Aid Image Retrieval

Kraisak Kesorn, S. Poslad
{"title":"Use of Semantic Enhancements to NLP of Image Captions to Aid Image Retrieval","authors":"Kraisak Kesorn, S. Poslad","doi":"10.1109/SMAP.2008.18","DOIUrl":null,"url":null,"abstract":"This paper proposes a semantic-based create and search technique to enhance visual information retrieval. Our approach includes an ontology-based scheme for the semi-automatic annotation for image retrieval. Latent Semantic Indexing (LSI) is used in order to solve the Natural Language (NL) vagueness problem and to tolerate ontology imperfections. In addition, our framework is able to find indirect relevant concepts in images and to represent image semantics at a higher level. Experiments demonstrate that semantic-based approaches can significantly improve image retrieval.","PeriodicalId":292389,"journal":{"name":"2008 Third International Workshop on Semantic Media Adaptation and Personalization","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Workshop on Semantic Media Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2008.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a semantic-based create and search technique to enhance visual information retrieval. Our approach includes an ontology-based scheme for the semi-automatic annotation for image retrieval. Latent Semantic Indexing (LSI) is used in order to solve the Natural Language (NL) vagueness problem and to tolerate ontology imperfections. In addition, our framework is able to find indirect relevant concepts in images and to represent image semantics at a higher level. Experiments demonstrate that semantic-based approaches can significantly improve image retrieval.
使用语义增强的图像标题NLP来辅助图像检索
本文提出了一种基于语义的视觉信息创建与检索技术。我们的方法包括一种基于本体的图像检索半自动标注方案。潜在语义索引(LSI)是为了解决自然语言(NL)模糊问题和容忍本体缺陷而使用的。此外,我们的框架能够在图像中找到间接相关的概念,并在更高层次上表示图像语义。实验表明,基于语义的方法可以显著改善图像检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信