Kernel ridge regression method applied to speech recognition problem: A novel approach

H. Trang, L. Tran
{"title":"Kernel ridge regression method applied to speech recognition problem: A novel approach","authors":"H. Trang, L. Tran","doi":"10.1109/ATC.2014.7043378","DOIUrl":null,"url":null,"abstract":"Speech recognition is the important problem in pattern recognition research field. In this paper, the kernel ridge regression method is proposed to be applied to the MFCC feature vectors of the speech dataset available from IC Design lab at Faculty of Electricals-Electronics Engineering, University of Technology, Ho Chi Minh City. Experiment results show that the kernel ridge regression method outperforms the current state of the art Hidden Markov Model method in speech recognition problem in terms of sensitivity performance measure and calculation speed of training process.","PeriodicalId":333572,"journal":{"name":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2014.7043378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Speech recognition is the important problem in pattern recognition research field. In this paper, the kernel ridge regression method is proposed to be applied to the MFCC feature vectors of the speech dataset available from IC Design lab at Faculty of Electricals-Electronics Engineering, University of Technology, Ho Chi Minh City. Experiment results show that the kernel ridge regression method outperforms the current state of the art Hidden Markov Model method in speech recognition problem in terms of sensitivity performance measure and calculation speed of training process.
核脊回归法在语音识别中的应用:一种新方法
语音识别是模式识别研究领域中的一个重要问题。本文提出将核脊回归方法应用于胡志明市理工大学电子电气工程学院IC设计实验室语音数据集的MFCC特征向量。实验结果表明,在语音识别问题中,核脊回归方法在灵敏度、性能度量和训练过程的计算速度方面都优于当前最先进的隐马尔可夫模型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信