Mining Social Media Data Using Topological Data Analysis

Khaled Almgren, Minkyu Kim, JeongKyu Lee
{"title":"Mining Social Media Data Using Topological Data Analysis","authors":"Khaled Almgren, Minkyu Kim, JeongKyu Lee","doi":"10.1109/IRI.2017.41","DOIUrl":null,"url":null,"abstract":"Topological data analysis is a noble method to analyze high-dimensional qualitative data using a set of properties from topology. In this paper, we explore the feasibility of topological data analysis for mining social media data by investigating the problem of image popularity. We randomly crawl images from Instagram, convert their captions to 300 dimensional numerical vectors using Word2vec, calculate cosine distances to evaluate the similarities of the caption vectors, and then apply the distances to a topological data analysis algorithm called mapper.With caption vectors, the results show that topological data analysis is able to cluster the images related to the images’ popularity. Moreover, the results show relationships between the clusters that are represented as a monotonic increase of popularity. This approach is compared with traditional clustering algorithms, including k-means and hierarchical clustering, and the results show that topological data analysis outperforms the others.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Topological data analysis is a noble method to analyze high-dimensional qualitative data using a set of properties from topology. In this paper, we explore the feasibility of topological data analysis for mining social media data by investigating the problem of image popularity. We randomly crawl images from Instagram, convert their captions to 300 dimensional numerical vectors using Word2vec, calculate cosine distances to evaluate the similarities of the caption vectors, and then apply the distances to a topological data analysis algorithm called mapper.With caption vectors, the results show that topological data analysis is able to cluster the images related to the images’ popularity. Moreover, the results show relationships between the clusters that are represented as a monotonic increase of popularity. This approach is compared with traditional clustering algorithms, including k-means and hierarchical clustering, and the results show that topological data analysis outperforms the others.
利用拓扑数据分析挖掘社交媒体数据
拓扑数据分析是一种利用拓扑的一组属性来分析高维定性数据的高贵方法。本文通过对图像人气问题的研究,探讨了拓扑数据分析用于挖掘社交媒体数据的可行性。我们从Instagram上随机抓取图像,使用Word2vec将其标题转换为300维数值向量,计算余弦距离以评估标题向量的相似性,然后将距离应用于称为mapper的拓扑数据分析算法。使用标题向量,结果表明拓扑数据分析能够将与图像受欢迎程度相关的图像聚类。此外,结果显示集群之间的关系,表示为单调增加的人气。将该方法与传统的聚类算法(包括k-means和分层聚类)进行了比较,结果表明拓扑数据分析优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信