Automatic accounting of Baikal diatomic algae: approaches and prospects

Кonstantin А. Elshin, Еlena I. Molchanova, Мarina Usoltseva, Y. Likhoshway
{"title":"Automatic accounting of Baikal diatomic algae: approaches and prospects","authors":"Кonstantin А. Elshin, Еlena I. Molchanova, Мarina Usoltseva, Y. Likhoshway","doi":"10.33624/2311-0147-2019-2(20)-295-299","DOIUrl":null,"url":null,"abstract":"Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.","PeriodicalId":305989,"journal":{"name":"Issues of modern algology (Вопросы современной альгологии)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Issues of modern algology (Вопросы современной альгологии)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33624/2311-0147-2019-2(20)-295-299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.
贝加尔湖双原子藻自动核算方法与展望
利用TensorFlow对象检测API,对贝加尔湖硅藻物种Synedra acus subsp进行了识别和注册。弧度已经过测试。从而形成一组图像并进行训练。由图可知,经过15000次训练迭代后,得到的损失函数的总价值为0,04。同时,分类精度等于95%,边界框的构造精度也等于95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信