Recognition Accuracy Enhancement using Interface Control with Weight Variation-Lowering in Analog Computation-in-Memory

S. Park, Gyonhui Lee, Youngjae Kwon, D. Suh, Hanwool Lee, Sangeun Je, Dabin Kim, Dohan Lee, Seungwook Ryu, Seungbum Kim, Euiseok Kim, Sunghoon Lee, Kyoung Park, Seho Lee, Myung-Hee Na, Seonyong Cha
{"title":"Recognition Accuracy Enhancement using Interface Control with Weight Variation-Lowering in Analog Computation-in-Memory","authors":"S. Park, Gyonhui Lee, Youngjae Kwon, D. Suh, Hanwool Lee, Sangeun Je, Dabin Kim, Dohan Lee, Seungwook Ryu, Seungbum Kim, Euiseok Kim, Sunghoon Lee, Kyoung Park, Seho Lee, Myung-Hee Na, Seonyong Cha","doi":"10.1109/IMW52921.2022.9779296","DOIUrl":null,"url":null,"abstract":"As AI technology develops, it is necessary to verify the technical feasibility of Memory-Centric convergence technology. Previously investigated resistive synaptic devices (RSDs) can successfully mimic the function of biological synapses. However, the effect of the system recognition rate reflecting the variation of 16 weight states has not been studied yet. In this article, we perform simulations of various weight variation sets through real resistive synaptic device (RSD) engineering in Analog Computation-in-Memory (ACiM) system. These simulation results can provide guidelines for the continued design and optimization of a resistive synaptic device for realizing ACiM.","PeriodicalId":132074,"journal":{"name":"2022 IEEE International Memory Workshop (IMW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW52921.2022.9779296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As AI technology develops, it is necessary to verify the technical feasibility of Memory-Centric convergence technology. Previously investigated resistive synaptic devices (RSDs) can successfully mimic the function of biological synapses. However, the effect of the system recognition rate reflecting the variation of 16 weight states has not been studied yet. In this article, we perform simulations of various weight variation sets through real resistive synaptic device (RSD) engineering in Analog Computation-in-Memory (ACiM) system. These simulation results can provide guidelines for the continued design and optimization of a resistive synaptic device for realizing ACiM.
内存模拟计算中减小权值变化的接口控制提高识别精度
随着人工智能技术的发展,有必要验证以内存为中心的融合技术的技术可行性。先前研究的电阻性突触装置(rsd)可以成功地模拟生物突触的功能。然而,反映16种权值状态变化的系统识别率的影响尚未得到研究。在本文中,我们通过在模拟内存计算(ACiM)系统中的真实电阻突触装置(RSD)工程进行了各种权重变化集的模拟。这些仿真结果可以为实现ACiM的电阻性突触装置的进一步设计和优化提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信