Path Planning and Task Assignment for Data Retrieval from Wireless Sensor Nodes Relying on Game-Theoretic Learning

Sotiris Papatheodorou, M. Smyrnakis, H. Tembine, A. Tzes
{"title":"Path Planning and Task Assignment for Data Retrieval from Wireless Sensor Nodes Relying on Game-Theoretic Learning","authors":"Sotiris Papatheodorou, M. Smyrnakis, H. Tembine, A. Tzes","doi":"10.1109/CoDIT.2018.8394924","DOIUrl":null,"url":null,"abstract":"The energy-efficient trip allocation of mobile robots employing differential drives for data retrieval from stationary sensor locations is the scope of this article. Given a team of robots and a set of targets (wireless sensor nodes), the planner computes all possible tours that each robot can make if it needs to visit a part of or the entire set of targets. Each segment of the tour relies on a minimum energy path planning algorithm. After the computation of all possible tour-segments, a utility function penalizing the overall energy consumption is formed. Rather than relying on the NP-hard Mobile Element Scheduling (MES) MILP problem, an approach using elements from game theory is employed. The suggested approach converges fast for most practical reasons thus allowing its utilization in near real time applications. Simulations are offered to highlight the efficiency of the developed algorithm.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The energy-efficient trip allocation of mobile robots employing differential drives for data retrieval from stationary sensor locations is the scope of this article. Given a team of robots and a set of targets (wireless sensor nodes), the planner computes all possible tours that each robot can make if it needs to visit a part of or the entire set of targets. Each segment of the tour relies on a minimum energy path planning algorithm. After the computation of all possible tour-segments, a utility function penalizing the overall energy consumption is formed. Rather than relying on the NP-hard Mobile Element Scheduling (MES) MILP problem, an approach using elements from game theory is employed. The suggested approach converges fast for most practical reasons thus allowing its utilization in near real time applications. Simulations are offered to highlight the efficiency of the developed algorithm.
基于博弈论学习的无线传感器节点数据检索路径规划与任务分配
采用差动驱动器的移动机器人的节能行程分配从固定传感器位置的数据检索是本文的范围。给定一组机器人和一组目标(无线传感器节点),规划器计算每个机器人在需要访问部分或全部目标时可能进行的所有行程。每一段旅程都依赖于最小能量路径规划算法。在对所有可能的行程段进行计算后,形成对总能耗进行惩罚的效用函数。本文采用了一种利用博弈论元素的方法,而不是依赖NP-hard移动元素调度(MES) MILP问题。由于大多数实际原因,建议的方法收敛速度很快,因此允许在接近实时的应用程序中使用。仿真结果表明了所开发算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信