{"title":"The Fundamental Current Mechanisms in SiC Schottky Barrier Diodes: Physical Model, Experimental Verification and Implications","authors":"S. Dimitrijev, J. Nicholls, P. Tanner, J. Han","doi":"10.1109/MIEL.2019.8889628","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the equations for the current-voltage characteristics of SiC Schottky barrier diodes from the fundamental physics of thermionic emission and tunneling, as the two fundamental current mechanisms. An excellent fit between the model and the experimental data is achieved without the need for empirical fitting parameters, such as the commonly used ideality factor, and with a single set of physically meaningful parameters. This result shows that the current transport in the measured SiC Schottky diodes is not dominated by defects.","PeriodicalId":391606,"journal":{"name":"2019 IEEE 31st International Conference on Microelectronics (MIEL)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Microelectronics (MIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIEL.2019.8889628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we derive the equations for the current-voltage characteristics of SiC Schottky barrier diodes from the fundamental physics of thermionic emission and tunneling, as the two fundamental current mechanisms. An excellent fit between the model and the experimental data is achieved without the need for empirical fitting parameters, such as the commonly used ideality factor, and with a single set of physically meaningful parameters. This result shows that the current transport in the measured SiC Schottky diodes is not dominated by defects.