A Hardware Perspective on the ChaCha Ciphers: Scalable Chacha8/12/20 Implementations Ranging from 476 Slices to Bitrates of 175 Gbit/s

J. Pfau, Maximilian Reuter, T. Harbaum, K. Hofmann, J. Becker
{"title":"A Hardware Perspective on the ChaCha Ciphers: Scalable Chacha8/12/20 Implementations Ranging from 476 Slices to Bitrates of 175 Gbit/s","authors":"J. Pfau, Maximilian Reuter, T. Harbaum, K. Hofmann, J. Becker","doi":"10.1109/SOCC46988.2019.1570548289","DOIUrl":null,"url":null,"abstract":"AES (Advanced Encryption Standard) accelerators are commonly used in high-throughput applications, but they have notable resource requirements. We investigate replacing the AES cipher with ChaCha ciphers and propose the first ChaCha FPGA implementations optimized for data throughput. In consequence, we compare implementations of three different system architectures and analyze which aspects dominate the performance of those.Our experimental results indicate that a bandwidth of 175 Gbit/s can be reached with as little as 2982 slices, whereas comparable state of the art AES accelerators require 10 times as many slices [1]. Taking advantage of the flexibility inherent in the ChaCha cipher, we also demonstrate how our implementation scales to even higher throughputs or lower resource usage (down to 476 slices), benefiting applications which previously could not employ cryptography because of resource limitations.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570548289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

AES (Advanced Encryption Standard) accelerators are commonly used in high-throughput applications, but they have notable resource requirements. We investigate replacing the AES cipher with ChaCha ciphers and propose the first ChaCha FPGA implementations optimized for data throughput. In consequence, we compare implementations of three different system architectures and analyze which aspects dominate the performance of those.Our experimental results indicate that a bandwidth of 175 Gbit/s can be reached with as little as 2982 slices, whereas comparable state of the art AES accelerators require 10 times as many slices [1]. Taking advantage of the flexibility inherent in the ChaCha cipher, we also demonstrate how our implementation scales to even higher throughputs or lower resource usage (down to 476 slices), benefiting applications which previously could not employ cryptography because of resource limitations.
从硬件角度看ChaCha密码:从476片到175 Gbit/s比特率的可扩展chachha8/12/20实现
AES(高级加密标准)加速器通常用于高吞吐量应用程序,但它们有明显的资源需求。我们研究了用ChaCha密码代替AES密码,并提出了第一个针对数据吞吐量进行优化的ChaCha FPGA实现。因此,我们比较了三种不同系统架构的实现,并分析了哪些方面主导了它们的性能。我们的实验结果表明,只需2982个切片就可以达到175 Gbit/s的带宽,而最先进的AES加速器需要10倍的切片[1]。利用ChaCha密码固有的灵活性,我们还演示了我们的实现如何扩展到更高的吞吐量或更低的资源使用(低至476片),从而使以前由于资源限制而无法使用加密的应用程序受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信