H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra
{"title":"Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph","authors":"H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra","doi":"10.1063/5.0017092","DOIUrl":null,"url":null,"abstract":"A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.","PeriodicalId":309025,"journal":{"name":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0017092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.