Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph

H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra
{"title":"Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph","authors":"H. Helmi, Brella Glysentia Vilgalita, F. Fran, D. R. Putra","doi":"10.1063/5.0017092","DOIUrl":null,"url":null,"abstract":"A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.","PeriodicalId":309025,"journal":{"name":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0017092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.
彩虹顶点连接数的正方形,胶水,中间和分割图的刷图
如果对于V(G)中的每两个顶点u和V,存在一条u - V路径,且所有内部顶点都具有不同的颜色,则称顶点彩色图G = (V(G), E(G))为彩虹顶点连通图。G的彩虹顶点连接数用rvc(G)表示,它是使G彩虹顶点连接所需的最小颜色数。设n是至少为2的整数,Bn是一个有2n个顶点的刷图。本文确定了画笔图的正方形图、胶水图、中间图和分割图的彩虹顶点连接数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信