Numerical simulation of CdS/CdTe tandem solar cell with addition of ET-HBL

A. Amin
{"title":"Numerical simulation of CdS/CdTe tandem solar cell with addition of ET-HBL","authors":"A. Amin","doi":"10.1109/CEEICT.2016.7873171","DOIUrl":null,"url":null,"abstract":"Heterojunction structure CdS/CdTe solar cell has long been regarded as one auspicious choice for the development of the renewable energy sector. CdS/CdTe tandem solar cell with addition of Electron Transport-Hole Blocking Layer (ET-HBL) on the Cadmium Sulfide (CdS) window layer has been simulated using One-Dimensional Device Simulation Program for Analysis of Microelectronic and Photonic Structures (AMPS-1D) in this simulation model. The band diagram of the solar cell has been obtained at the thermodynamic equilibrium condition, & electron current & hole current density are also observed at short circuit & under AM 1.5G light illumination. The hole density of CdTe has tremendous effect on the efficiency of solar cell. The maximum efficiency of 36.908% has been achieved by varying the hole density of CdTe. The performance parameters of the CdS/CdTe solar cell with ET-HBL are compared with the without ET-HBL.","PeriodicalId":240329,"journal":{"name":"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)","volume":"54 81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEICT.2016.7873171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterojunction structure CdS/CdTe solar cell has long been regarded as one auspicious choice for the development of the renewable energy sector. CdS/CdTe tandem solar cell with addition of Electron Transport-Hole Blocking Layer (ET-HBL) on the Cadmium Sulfide (CdS) window layer has been simulated using One-Dimensional Device Simulation Program for Analysis of Microelectronic and Photonic Structures (AMPS-1D) in this simulation model. The band diagram of the solar cell has been obtained at the thermodynamic equilibrium condition, & electron current & hole current density are also observed at short circuit & under AM 1.5G light illumination. The hole density of CdTe has tremendous effect on the efficiency of solar cell. The maximum efficiency of 36.908% has been achieved by varying the hole density of CdTe. The performance parameters of the CdS/CdTe solar cell with ET-HBL are compared with the without ET-HBL.
添加ET-HBL的CdS/CdTe串联太阳能电池的数值模拟
异质结结构CdS/CdTe太阳能电池一直被认为是可再生能源领域发展的一种有利选择。利用微电子和光子结构分析一维器件仿真程序(AMPS-1D)对在硫化镉(cd)窗口层上添加电子传输空穴阻挡层(ET-HBL)的CdS/CdTe串联太阳能电池进行了仿真。得到了太阳能电池在热力学平衡条件下的能带图,并观察了短路和AM 1.5G光照下的电子电流和空穴电流密度。碲化镉的空穴密度对太阳能电池的效率有很大的影响。通过改变CdTe的孔密度,可以达到36.908%的最高效率。比较了添加ET-HBL与未添加ET-HBL的CdS/CdTe太阳能电池的性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信