Stacked Auto-Encoder Driven Automatic Feature Extraction for Web-Enabled EEG Emotion Recognition

Yixiang Dai, Encai Ji, Yong Yao
{"title":"Stacked Auto-Encoder Driven Automatic Feature Extraction for Web-Enabled EEG Emotion Recognition","authors":"Yixiang Dai, Encai Ji, Yong Yao","doi":"10.1109/ICNISC54316.2021.00187","DOIUrl":null,"url":null,"abstract":"EEG emotion recognition is able to provide a scientific solution for emotional health assessment. Feature extraction is the fundamental procedure. Traditionally, the future set is generated by the existing theories or rules, which is not convincing and objective enough. Therefore, this paper proposes a data-driven automatic feature extraction methodology for web-enabled EEG emotion recognition based on 2-hidden-layer stacked auto-encoder. Since the web-enabled framework provides large scale of EEG data, emotion-related EEG features can be extracted directly from the time-domain raw wave, which is different from the typical feature extraction methods based on rules and experiences. With the optimal experimental parameters setting, the proposed method extracts typical time-domain distinguishable features from the EEG raw data and obtains relatively low classification error rate. This paper takes a step further towards automatic feature extraction for web-enabled EEG emotion recognition and make the entire framework more impersonal and convincing.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

EEG emotion recognition is able to provide a scientific solution for emotional health assessment. Feature extraction is the fundamental procedure. Traditionally, the future set is generated by the existing theories or rules, which is not convincing and objective enough. Therefore, this paper proposes a data-driven automatic feature extraction methodology for web-enabled EEG emotion recognition based on 2-hidden-layer stacked auto-encoder. Since the web-enabled framework provides large scale of EEG data, emotion-related EEG features can be extracted directly from the time-domain raw wave, which is different from the typical feature extraction methods based on rules and experiences. With the optimal experimental parameters setting, the proposed method extracts typical time-domain distinguishable features from the EEG raw data and obtains relatively low classification error rate. This paper takes a step further towards automatic feature extraction for web-enabled EEG emotion recognition and make the entire framework more impersonal and convincing.
堆叠自编码器驱动的基于网络的EEG情感识别自动特征提取
脑电情绪识别能够为情绪健康评估提供科学的解决方案。特征提取是基本步骤。传统上,未来的集合是由现有的理论或规则产生的,缺乏足够的说服力和客观性。为此,本文提出了一种基于2隐层堆叠自编码器的基于数据驱动的基于web的脑电情感识别自动特征提取方法。基于web的框架提供了大规模的脑电数据,与传统的基于规则和经验的特征提取方法不同,可以直接从时域原始波中提取与情绪相关的脑电特征。该方法通过优化实验参数,从脑电原始数据中提取出典型的时域可分辨特征,分类错误率较低。本文在面向网络的EEG情感识别的自动特征提取方面又向前迈进了一步,使整个框架更加客观和令人信服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信