{"title":"Supply voltage scalable system design using self-timed circuits","authors":"W. Kuang, J. Yuan, A. Ejnioui","doi":"10.1109/ISVLSI.2003.1183368","DOIUrl":null,"url":null,"abstract":"Supply voltage scalable system design for low power is investigated using self-timed circuits in this paper. Two architectures are proposed to achieve supply voltage scalability, for preserved quality and energy-quality tradeoff respectively, In the first architecture, the supply-voltage automatically tracks the input data rate of the data path so that the supply-voltage can be kept as small as possible while maintaining the speed requirement and processing quality. In the second one, further energy saving is achieved at the cost of signal-noise-ratio loss in digital signal processing when an ultra-low supply voltage is applied. Cadence simulation shows the effectiveness for both architectures. More than 40% to 70% power can be saved by introducing -150 to -10 dB error in a case study: speech signal processing.","PeriodicalId":299309,"journal":{"name":"IEEE Computer Society Annual Symposium on VLSI, 2003. Proceedings.","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Society Annual Symposium on VLSI, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2003.1183368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Supply voltage scalable system design for low power is investigated using self-timed circuits in this paper. Two architectures are proposed to achieve supply voltage scalability, for preserved quality and energy-quality tradeoff respectively, In the first architecture, the supply-voltage automatically tracks the input data rate of the data path so that the supply-voltage can be kept as small as possible while maintaining the speed requirement and processing quality. In the second one, further energy saving is achieved at the cost of signal-noise-ratio loss in digital signal processing when an ultra-low supply voltage is applied. Cadence simulation shows the effectiveness for both architectures. More than 40% to 70% power can be saved by introducing -150 to -10 dB error in a case study: speech signal processing.