Selection of an optimum random matrix using a genetic algorithm for acoustic feature extraction

Yuichiro Kataoka, Toru Nakashika, Ryo Aihara, T. Takiguchi, Y. Ariki
{"title":"Selection of an optimum random matrix using a genetic algorithm for acoustic feature extraction","authors":"Yuichiro Kataoka, Toru Nakashika, Ryo Aihara, T. Takiguchi, Y. Ariki","doi":"10.1109/ICIS.2016.7550890","DOIUrl":null,"url":null,"abstract":"This paper describes a selection technique of an optimum random matrix using a genetic algorithm for speech recognition based on random projections. Random projections have been suggested as a means of dimensionality reduction, where the original data are projected onto a subspace using a random matrix. Moreover, as we are able to produce various random matrices, it may be possible to find a transform matrix that is superior to conventional transformation matrices among random matrices. In this paper, a genetic algorithm is introduced to find an optimum random matrix. Its effectiveness is confirmed by word recognition experiments.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2016.7550890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes a selection technique of an optimum random matrix using a genetic algorithm for speech recognition based on random projections. Random projections have been suggested as a means of dimensionality reduction, where the original data are projected onto a subspace using a random matrix. Moreover, as we are able to produce various random matrices, it may be possible to find a transform matrix that is superior to conventional transformation matrices among random matrices. In this paper, a genetic algorithm is introduced to find an optimum random matrix. Its effectiveness is confirmed by word recognition experiments.
利用遗传算法选择最优随机矩阵进行声学特征提取
本文介绍了一种基于随机投影的语音识别中最优随机矩阵的遗传算法选择技术。随机投影被建议作为降维的一种手段,其中原始数据使用随机矩阵投影到子空间。此外,由于我们能够产生各种随机矩阵,因此有可能在随机矩阵中找到优于常规变换矩阵的变换矩阵。本文引入了一种寻优随机矩阵的遗传算法。通过单词识别实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信