Automatic Detection of Dental Cysts in Panoramic Radiography Images using Preprocessing Techniques and Convolutional Neural Networks

Jinu Thomas, V. Ulagamuthalvi
{"title":"Automatic Detection of Dental Cysts in Panoramic Radiography Images using Preprocessing Techniques and Convolutional Neural Networks","authors":"Jinu Thomas, V. Ulagamuthalvi","doi":"10.1109/ICERECT56837.2022.10060124","DOIUrl":null,"url":null,"abstract":"Mouth-related pathologies represent an important challenge for public authorities. To develop a methodology, through studies on Computer Vision techniques, for the automatic identification of dental cysts in panoramic radiography images, providing Dental professionals with an alternative to aid in the interpretation of these images. For this purpose, two CNN architectures were analyzed for classification and experimentation using image pre-processing techniques. One such proposal, using morphological contrast, had a better performance, with a precision of 0.937 and an F1 score of 0.847.","PeriodicalId":205485,"journal":{"name":"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICERECT56837.2022.10060124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mouth-related pathologies represent an important challenge for public authorities. To develop a methodology, through studies on Computer Vision techniques, for the automatic identification of dental cysts in panoramic radiography images, providing Dental professionals with an alternative to aid in the interpretation of these images. For this purpose, two CNN architectures were analyzed for classification and experimentation using image pre-processing techniques. One such proposal, using morphological contrast, had a better performance, with a precision of 0.937 and an F1 score of 0.847.
基于预处理技术和卷积神经网络的全景放射影像牙囊肿自动检测
口腔相关疾病是公共当局面临的一个重要挑战。通过计算机视觉技术的研究,开发一种方法,用于自动识别全景放射摄影图像中的牙囊肿,为牙科专业人员提供另一种帮助解释这些图像的方法。为此,使用图像预处理技术对两种CNN架构进行了分类和实验分析。其中使用形态对比的建议具有更好的性能,精度为0.937,F1得分为0.847。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信