Discriminative pronunciation learning for speech recognition for resource scarce languages

H. Y. Chan, R. Rosenfeld
{"title":"Discriminative pronunciation learning for speech recognition for resource scarce languages","authors":"H. Y. Chan, R. Rosenfeld","doi":"10.1145/2160601.2160618","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a method to create speech recognition capability for small vocabularies in resource-scarce languages. By resource-scarce languages, we mean languages that have a small or economically disadvantaged user base which are typically ignored by the commercial world. We use a high-quality well-trained speech recognizer as our baseline to remove the dependence on large audio data for an accurate acoustic model. Using cross-language phoneme mapping, the baseline recognizer effectively recognizes words in our target language. We automate the generation of pronunciations and generate a set of initial pronunciations for each word in the vocabulary. Next, we remove potential conflicts in word recognition by discriminative training.","PeriodicalId":153059,"journal":{"name":"ACM DEV '12","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM DEV '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2160601.2160618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, we describe a method to create speech recognition capability for small vocabularies in resource-scarce languages. By resource-scarce languages, we mean languages that have a small or economically disadvantaged user base which are typically ignored by the commercial world. We use a high-quality well-trained speech recognizer as our baseline to remove the dependence on large audio data for an accurate acoustic model. Using cross-language phoneme mapping, the baseline recognizer effectively recognizes words in our target language. We automate the generation of pronunciations and generate a set of initial pronunciations for each word in the vocabulary. Next, we remove potential conflicts in word recognition by discriminative training.
资源稀缺语言语音识别的辨析语音学习
在本文中,我们描述了一种在资源稀缺的语言中创建小词汇的语音识别能力的方法。所谓资源稀缺语言,我们指的是那些用户基数较小或经济上处于不利地位的语言,这些语言通常被商业世界所忽视。我们使用一个高质量的训练有素的语音识别器作为我们的基线,以消除对大型音频数据的依赖,以获得准确的声学模型。使用跨语言音素映射,基线识别器可以有效地识别目标语言中的单词。我们自动生成发音,并为词汇表中的每个单词生成一组初始发音。接下来,我们通过判别训练消除词识别中的潜在冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信