Benchmarking Forecast Approaches for Mortgage Credit Risk for Forward Periods

T. M. Luong, Harald Scheule
{"title":"Benchmarking Forecast Approaches for Mortgage Credit Risk for Forward Periods","authors":"T. M. Luong, Harald Scheule","doi":"10.2139/ssrn.3924049","DOIUrl":null,"url":null,"abstract":"This paper explores alternative forecast approaches for mortgage credit risk for forward periods of up to seven years. Using data from US prime mortgage loans from 2000 to 2016, we find that common borrower, loan contract and external features are significant in explaining credit risk over forward periods. Time variation may come through the ageing and forward channel. We develop a hybrid model for predicting default probabilities that combines both channels and outperforms standalone alternatives. This higher precision results in more accurate economic capital, IFRS 9/CECL loan loss provisioning and mortgage pricing, and hence, a more efficient and resilient resource allocation in commercial banks.","PeriodicalId":428959,"journal":{"name":"Household Finance eJournal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Household Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3924049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper explores alternative forecast approaches for mortgage credit risk for forward periods of up to seven years. Using data from US prime mortgage loans from 2000 to 2016, we find that common borrower, loan contract and external features are significant in explaining credit risk over forward periods. Time variation may come through the ageing and forward channel. We develop a hybrid model for predicting default probabilities that combines both channels and outperforms standalone alternatives. This higher precision results in more accurate economic capital, IFRS 9/CECL loan loss provisioning and mortgage pricing, and hence, a more efficient and resilient resource allocation in commercial banks.
远期按揭信贷风险的基准预测方法
本文探讨了抵押贷款信用风险的替代预测方法,为未来长达七年的时期。利用2000 - 2016年美国优质抵押贷款数据,我们发现共同借款人、贷款合同和外部特征在解释远期信贷风险方面具有重要意义。时间变化可以通过老化和向前通道来实现。我们开发了一个混合模型来预测违约概率,该模型结合了两个渠道,并且优于单独的替代方案。这种更高的精度导致更准确的经济资本,IFRS 9/CECL贷款损失拨备和抵押贷款定价,因此,商业银行更有效和更有弹性的资源配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信