M. U. Masood, I. Khan, Lorenzo Tunesi, B. Correia, R. Sadeghi, E. Ghillino, P. Bardella, A. Carena, V. Curri
{"title":"Networking Analysis of Photonics Integrated Multiband WSS Based ROADM Architecture","authors":"M. U. Masood, I. Khan, Lorenzo Tunesi, B. Correia, R. Sadeghi, E. Ghillino, P. Bardella, A. Carena, V. Curri","doi":"10.23919/softcom55329.2022.9911234","DOIUrl":null,"url":null,"abstract":"Due to increasing traffic demand, the current optical transport infrastructure is experiencing capacity problems. Spa-tial Division Multiplexing (SDM) and Bandwidth Division Mul-tiplexing (BDM) have emerged as potential solutions to increase the capacity of the network infrastructure. In this paper, a novel modular photonic integrated multiband wavelength selective switch (WSS) in a reconfigurable optical add-drop multiplexer (ROADM) architecture is proposed. This proposed WSS can operate over a wide spectral range, including C+ L+S bands, and is potentially scalable to a large number of output fibers and routed channels while maintaining a small footprint. We investigated the network performance of the proposed multiband WSS switching structure in the Spain-E topology network and performed a detailed comparison for the SDM and BDM sce-narios. In comparison to the SDM approach, which requires the deployment of additional fibers, the results show that the cost-effective BDM scenario can utilize the capacity better without installing the new fiber infrastructure or using dark fibers.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Due to increasing traffic demand, the current optical transport infrastructure is experiencing capacity problems. Spa-tial Division Multiplexing (SDM) and Bandwidth Division Mul-tiplexing (BDM) have emerged as potential solutions to increase the capacity of the network infrastructure. In this paper, a novel modular photonic integrated multiband wavelength selective switch (WSS) in a reconfigurable optical add-drop multiplexer (ROADM) architecture is proposed. This proposed WSS can operate over a wide spectral range, including C+ L+S bands, and is potentially scalable to a large number of output fibers and routed channels while maintaining a small footprint. We investigated the network performance of the proposed multiband WSS switching structure in the Spain-E topology network and performed a detailed comparison for the SDM and BDM sce-narios. In comparison to the SDM approach, which requires the deployment of additional fibers, the results show that the cost-effective BDM scenario can utilize the capacity better without installing the new fiber infrastructure or using dark fibers.