Identities for Homogeneous Utility Functions

Miguel Andrés Espinosa, Juan David Prada Sarmiento
{"title":"Identities for Homogeneous Utility Functions","authors":"Miguel Andrés Espinosa, Juan David Prada Sarmiento","doi":"10.2139/ssrn.1705480","DOIUrl":null,"url":null,"abstract":"Using a homogeneous and continuous utility function that represents a household's preferences, this paper proves explicit identities between most of the different objects that arise from the utility maximization and the expenditure minimization problems. The paper also outlines the homogeneity properties of each object. Finally, we show explicit algebraic ways to go from the indirect utility function to the expenditure function and from the Marshallian demand to the Hicksian demand and vice versa, without the need of any other function, thus simplifying the integrability problem avoiding the use of differential equations.","PeriodicalId":446687,"journal":{"name":"Universidad de los Andes Department of Economics Research Paper Series","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universidad de los Andes Department of Economics Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1705480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using a homogeneous and continuous utility function that represents a household's preferences, this paper proves explicit identities between most of the different objects that arise from the utility maximization and the expenditure minimization problems. The paper also outlines the homogeneity properties of each object. Finally, we show explicit algebraic ways to go from the indirect utility function to the expenditure function and from the Marshallian demand to the Hicksian demand and vice versa, without the need of any other function, thus simplifying the integrability problem avoiding the use of differential equations.
齐次效用函数的恒等式
本文利用代表家庭偏好的齐次连续效用函数,证明了效用最大化和支出最小化问题所产生的大多数不同对象之间的显式同一性。本文还概述了每个对象的均匀性。最后,我们展示了明确的代数方法,从间接效用函数到支出函数,从马歇尔需求到希克斯需求,反之亦然,而不需要任何其他函数,从而简化了可积性问题,避免了使用微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信