The Influence Measures of Light Intensity on Machine Learning for Semantic Segmentation

Cheng-Hsien Chen, Yeong-Kang Lai
{"title":"The Influence Measures of Light Intensity on Machine Learning for Semantic Segmentation","authors":"Cheng-Hsien Chen, Yeong-Kang Lai","doi":"10.1109/ISOCC50952.2020.9333018","DOIUrl":null,"url":null,"abstract":"For the human eye, the conversion of light intensity through optic nerve is a non-linear conversion. Therefore, the differences of color caused by light intensity will be reduced by this mechanism. However, the conversion of light for the photosensor in camera is linear conversion, which also causes great influence on the image. Semantic segmentation could be known as a pixel-wise classifier. This technique can be implemented by machine learning or deep learning. In deep learning, the difference in light intensity has a relatively low impact because of relatively strong learning ability. For machine learning algorithms, it will have a significant impact because the classification method is based on RGB values. In this study, the light intensity of the training data would be calibrated and then the random forest model trained from the processed datasets would be compared with the model trained from the unprocessed datasets.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the human eye, the conversion of light intensity through optic nerve is a non-linear conversion. Therefore, the differences of color caused by light intensity will be reduced by this mechanism. However, the conversion of light for the photosensor in camera is linear conversion, which also causes great influence on the image. Semantic segmentation could be known as a pixel-wise classifier. This technique can be implemented by machine learning or deep learning. In deep learning, the difference in light intensity has a relatively low impact because of relatively strong learning ability. For machine learning algorithms, it will have a significant impact because the classification method is based on RGB values. In this study, the light intensity of the training data would be calibrated and then the random forest model trained from the processed datasets would be compared with the model trained from the unprocessed datasets.
光照强度对语义分割机器学习的影响度量
对于人眼来说,光强通过视神经的转换是一种非线性的转换。因此,由光强引起的颜色差异会因这种机制而减小。而相机中感光元件的光转换是线性转换,对图像的影响也很大。语义分割可以称为逐像素分类器。这种技术可以通过机器学习或深度学习来实现。在深度学习中,由于学习能力相对较强,光照强度的差异影响相对较小。对于机器学习算法,由于分类方法是基于RGB值的,因此它将产生重大影响。在本研究中,将对训练数据的光照强度进行校准,然后将经过处理的数据集训练出的随机森林模型与未经处理的数据集训练出的模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信