{"title":"Thermalhydraulic optimization of hypervapotron geometries for first wall applications","authors":"D. Youchison, M. Ulrickson, J. Bullock","doi":"10.1109/SOFE.2011.6052283","DOIUrl":null,"url":null,"abstract":"Plasma disruptions and Edge Localized Modes (ELMS) may result in transient heat fluxes as high as 5 MW/m2 on portions of the ITER first wall (FW). To accommodate these heat loads, roughly 50% of the first wall will have Enhanced Heat Flux (EHF) panels equipped with water-cooled hypervapotron heat sinks.","PeriodicalId":393592,"journal":{"name":"2011 IEEE/NPSS 24th Symposium on Fusion Engineering","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NPSS 24th Symposium on Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFE.2011.6052283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Plasma disruptions and Edge Localized Modes (ELMS) may result in transient heat fluxes as high as 5 MW/m2 on portions of the ITER first wall (FW). To accommodate these heat loads, roughly 50% of the first wall will have Enhanced Heat Flux (EHF) panels equipped with water-cooled hypervapotron heat sinks.