M. Mayya, S. Poltaretskyi, C. Hamitouche-Djabou, J. Chaoui
{"title":"Scapula Statistical Shape Model construction based on watershed segmentation and elastic registration","authors":"M. Mayya, S. Poltaretskyi, C. Hamitouche-Djabou, J. Chaoui","doi":"10.1109/ISBI.2013.6556422","DOIUrl":null,"url":null,"abstract":"Automated bone segmentation is one of the most challenging problems in medical imaging. The increasingly demanded MR imaging suffers from low contrast and signal-to-noise ratio when it comes to bones. To increase the segmentation robustness, a prior model of the structure could guide the segmentation when explicit information is missing or weakly presented. Statistical Shape Models (SSMs) are efficient examples for such application where a set of dense correspondences between the training samples is to be established. The complexity of the anatomy of the scapula's bone is a real challenge at this level. We present an automated SSM construction approach with an adapted initialization to address the correspondences problem. Our approach is atlas-based where landmarks are matched on each sample using rigid and elastic registration. Our innovation stems from the derivation of a robust SSM based on Watershed segmentation which steers the elastic registration at some critical zones.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Automated bone segmentation is one of the most challenging problems in medical imaging. The increasingly demanded MR imaging suffers from low contrast and signal-to-noise ratio when it comes to bones. To increase the segmentation robustness, a prior model of the structure could guide the segmentation when explicit information is missing or weakly presented. Statistical Shape Models (SSMs) are efficient examples for such application where a set of dense correspondences between the training samples is to be established. The complexity of the anatomy of the scapula's bone is a real challenge at this level. We present an automated SSM construction approach with an adapted initialization to address the correspondences problem. Our approach is atlas-based where landmarks are matched on each sample using rigid and elastic registration. Our innovation stems from the derivation of a robust SSM based on Watershed segmentation which steers the elastic registration at some critical zones.