Predicting protein-protein interactions using numerical associational features

Waleed Aljandal, W. Hsu, Jing Xia
{"title":"Predicting protein-protein interactions using numerical associational features","authors":"Waleed Aljandal, W. Hsu, Jing Xia","doi":"10.1109/CIBCB.2009.4925719","DOIUrl":null,"url":null,"abstract":"We investigate the problem of predicting protein-protein interaction (PPI) using numerical features constructed from parent-child relation of a partial network constructed from known protein interactions. For each pair of proteins, we use a validation-based approach to normalize these features, which are based on association rule interestingness measures. The primary contribution of this work is the parametric normalization formula we derive and calibrate using data for the PPI task. This formula improves basic interestingness measures through taking sizes of itemset into account. Our derived itemset size-sensitive measures consider those rare but significant relationships among the children and the parents of set of proteins. We evaluate our work using k-nearest neighbor and rule-based classification approach.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the problem of predicting protein-protein interaction (PPI) using numerical features constructed from parent-child relation of a partial network constructed from known protein interactions. For each pair of proteins, we use a validation-based approach to normalize these features, which are based on association rule interestingness measures. The primary contribution of this work is the parametric normalization formula we derive and calibrate using data for the PPI task. This formula improves basic interestingness measures through taking sizes of itemset into account. Our derived itemset size-sensitive measures consider those rare but significant relationships among the children and the parents of set of proteins. We evaluate our work using k-nearest neighbor and rule-based classification approach.
利用数值关联特征预测蛋白质与蛋白质的相互作用
我们研究了利用由已知蛋白质相互作用构建的部分网络的亲子关系构建的数值特征来预测蛋白质-蛋白质相互作用(PPI)的问题。对于每对蛋白质,我们使用基于验证的方法来规范化这些基于关联规则兴趣度度量的特征。这项工作的主要贡献是我们使用PPI任务的数据推导和校准参数归一化公式。这个公式通过考虑项目集的大小来改进基本的兴趣度量。我们的衍生项目集大小敏感的措施考虑那些罕见的,但重要的关系之间的孩子和一组蛋白质的父母。我们使用k近邻和基于规则的分类方法来评估我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信