{"title":"Receiving more than data - a signal model, theory and implementation of a cognitive IEEE 802.15.4 receiver","authors":"Tim Esemann, H. Hellbrück","doi":"10.4108/eai.5-9-2016.151646","DOIUrl":null,"url":null,"abstract":"Standard medium access schemes sense the channel immediately prior transmission, but are blind during the transmission. Therefore, standard transceivers have limited cognitive capabilities which are important for operation in heterogeneous radio environments. Specifically, mobile interferers move gradually into the reception range before actually causing collisions. These gradual interferences cannot yet be detected, and upcoming collisions cannot be predicted. We present a theoretical analysis of the received and demodulated signal. This analysis and the derived signal model verifies that the received signal contains more than transmitted data exclusively. Enhanced signal processing extracts signal components of an interference at the receiver and enables advanced interference detection to provide information about approaching mobile interferers. Our theoretical analysis is evaluated by simulations and experiments with an IEEE 802.15.4 transmitter and an extended cognitive receiver. Received on 13 May 2016; accepted on 06 August 2016; published on 05 September 2016","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.5-9-2016.151646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Standard medium access schemes sense the channel immediately prior transmission, but are blind during the transmission. Therefore, standard transceivers have limited cognitive capabilities which are important for operation in heterogeneous radio environments. Specifically, mobile interferers move gradually into the reception range before actually causing collisions. These gradual interferences cannot yet be detected, and upcoming collisions cannot be predicted. We present a theoretical analysis of the received and demodulated signal. This analysis and the derived signal model verifies that the received signal contains more than transmitted data exclusively. Enhanced signal processing extracts signal components of an interference at the receiver and enables advanced interference detection to provide information about approaching mobile interferers. Our theoretical analysis is evaluated by simulations and experiments with an IEEE 802.15.4 transmitter and an extended cognitive receiver. Received on 13 May 2016; accepted on 06 August 2016; published on 05 September 2016