{"title":"Micromachined branch line coupler in CMOS technology","authors":"M. Ozgur, U.C. Kozat, M. Zaghloul, M. Gaitan","doi":"10.1109/MWSYM.2000.860983","DOIUrl":null,"url":null,"abstract":"An internally ground-equalized coplanar branch line coupler (BLC) is fabricated by post-processing 2poly/2metal analog CMOS chips. First level metallization is used to equalize the ground planes, hence to suppress the unwanted coupled-slot-line mode propagation. This addition necessitates additional compensation of signal lines to improve the return losses. Fabricated CMOS chips are post-processed with a two-step procedure. First, a thick polyimide film is screen-printed on the devices as a stress-compensation. Then, the silicon substrate is selectively removed underneath the devices. The measured responses show very good agreement with simulations. Fabricated devises exhibit return losses less than 10 dB and maximum of 1 dB amplitude difference in the frequency range of 25-30 GHz.","PeriodicalId":149404,"journal":{"name":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2000.860983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
An internally ground-equalized coplanar branch line coupler (BLC) is fabricated by post-processing 2poly/2metal analog CMOS chips. First level metallization is used to equalize the ground planes, hence to suppress the unwanted coupled-slot-line mode propagation. This addition necessitates additional compensation of signal lines to improve the return losses. Fabricated CMOS chips are post-processed with a two-step procedure. First, a thick polyimide film is screen-printed on the devices as a stress-compensation. Then, the silicon substrate is selectively removed underneath the devices. The measured responses show very good agreement with simulations. Fabricated devises exhibit return losses less than 10 dB and maximum of 1 dB amplitude difference in the frequency range of 25-30 GHz.