The Zener-Emitter: Electron injection by direct-tunneling in Ge LEDs for the on-chip Si light source

R. Koerner, M. Oehme, K. Kostecki, I. Fischer, E. Rolseth, S. Bechler, M. Yorgidis, A. Blech, O. Latzl, J. Schulze
{"title":"The Zener-Emitter: Electron injection by direct-tunneling in Ge LEDs for the on-chip Si light source","authors":"R. Koerner, M. Oehme, K. Kostecki, I. Fischer, E. Rolseth, S. Bechler, M. Yorgidis, A. Blech, O. Latzl, J. Schulze","doi":"10.1109/DRC.2016.7548478","DOIUrl":null,"url":null,"abstract":"While monolithically integrated light sources for Si photonics have been investigated using Ge and GeSn on Si substrates [1-3], the challenges in material quality and efficiency remain to be solved. Turning the Group-IV material into a direct semiconductor for CMOS compatible concepts [4] promises enhanced electrical to optical conversion efficiencies. However, the red-shift in emitting wavelength is challenging for the peripheral devices such as modulators and photodetectors in complex optoelectronic integrated circuits (OEICs) [5]. We investigated a new concept by utilizing a reverse biased Ge p+n Zener diode for injection of electrons into a forward biased light emitting Ge p+-i-n diode providing holes for the radiative transition. In Ge, the direct band-to-band tunneling (BTBT) dominates over the phonon assisted indirect BTBT, which is highly beneficial for the Zener-Emitter [6]. Moreover, possible low voltage operation due to highly conductive Ge tunnel diodes and avoidance of current crowding effects by the high-energetic electron filtering mechanism of Zener diodes are further increasing the electrical injection efficiency [7].","PeriodicalId":310524,"journal":{"name":"2016 74th Annual Device Research Conference (DRC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 74th Annual Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2016.7548478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While monolithically integrated light sources for Si photonics have been investigated using Ge and GeSn on Si substrates [1-3], the challenges in material quality and efficiency remain to be solved. Turning the Group-IV material into a direct semiconductor for CMOS compatible concepts [4] promises enhanced electrical to optical conversion efficiencies. However, the red-shift in emitting wavelength is challenging for the peripheral devices such as modulators and photodetectors in complex optoelectronic integrated circuits (OEICs) [5]. We investigated a new concept by utilizing a reverse biased Ge p+n Zener diode for injection of electrons into a forward biased light emitting Ge p+-i-n diode providing holes for the radiative transition. In Ge, the direct band-to-band tunneling (BTBT) dominates over the phonon assisted indirect BTBT, which is highly beneficial for the Zener-Emitter [6]. Moreover, possible low voltage operation due to highly conductive Ge tunnel diodes and avoidance of current crowding effects by the high-energetic electron filtering mechanism of Zener diodes are further increasing the electrical injection efficiency [7].
齐纳-发射极:片上硅光源用Ge led的直接隧道电子注入
虽然已经研究了在Si衬底上使用Ge和GeSn的硅光子学单片集成光源[1-3],但材料质量和效率方面的挑战仍有待解决。将Group-IV材料转化为CMOS兼容概念的直接半导体[4]有望提高电光转换效率。然而,对于复杂光电集成电路(OEICs)中的调制器和光电探测器等外围器件来说,发射波长的红移是一个挑战[5]。我们研究了一个新的概念,利用反向偏置的Ge p+n齐纳二极管将电子注入到正向偏置发光的Ge p+-i-n二极管中,为辐射跃迁提供空穴。在Ge中,直接带到带隧道(BTBT)优于声子辅助的间接带到带隧道(BTBT),这对齐纳-发射极非常有利[6]。此外,由于高导电性的Ge隧道二极管可以实现低电压工作,齐纳二极管的高能电子过滤机制避免了电流拥挤效应,进一步提高了电注入效率[7]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信