Android mobile app development of neural networks for performance parameters computation of microstrip antennas

K. Chaitanya, Anshujit Sharma, T. Khan, Salam Thoithoi Singh, Kanchan Kumar
{"title":"Android mobile app development of neural networks for performance parameters computation of microstrip antennas","authors":"K. Chaitanya, Anshujit Sharma, T. Khan, Salam Thoithoi Singh, Kanchan Kumar","doi":"10.1109/WOCN.2017.8065856","DOIUrl":null,"url":null,"abstract":"Recently, smart phones have become popular in research applications because of improved performance. Several engineering and non-engineering applications are implemented in android operating system. One of the promising application area might be antenna engineering domain by developing apps in existing smart phones that can accurately determine vital parameters in antenna design. The objective of this paper is to develop mobile apps of neural network models in android OS for computing different performance parameters of microstrip antennas (MSAs). The proposed approach is applied in two diverse examples of MSAs for analyzing its performance in real world cases. The apps are made user friendly with a simplistic GUI. The results of the examples are compared with many references and a very good agreement is attained amongst them.","PeriodicalId":442547,"journal":{"name":"2017 Fourteenth International Conference on Wireless and Optical Communications Networks (WOCN)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourteenth International Conference on Wireless and Optical Communications Networks (WOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCN.2017.8065856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, smart phones have become popular in research applications because of improved performance. Several engineering and non-engineering applications are implemented in android operating system. One of the promising application area might be antenna engineering domain by developing apps in existing smart phones that can accurately determine vital parameters in antenna design. The objective of this paper is to develop mobile apps of neural network models in android OS for computing different performance parameters of microstrip antennas (MSAs). The proposed approach is applied in two diverse examples of MSAs for analyzing its performance in real world cases. The apps are made user friendly with a simplistic GUI. The results of the examples are compared with many references and a very good agreement is attained amongst them.
开发基于神经网络的Android手机应用程序,计算微带天线的性能参数
最近,智能手机由于性能的提高,在研究应用中越来越受欢迎。在android操作系统中实现了一些工程和非工程应用程序。通过在现有智能手机中开发能够准确确定天线设计关键参数的应用程序,天线工程领域可能是一个有前景的应用领域。本文的目的是在android操作系统中开发神经网络模型的移动应用程序,用于计算微带天线(msa)的不同性能参数。本文将所提出的方法应用于两个不同的msa示例中,以分析其在实际情况下的性能。这些应用程序通过简单的GUI使用户友好。算例的计算结果与许多参考文献的计算结果进行了比较,结果吻合得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信