{"title":"Studies of proton irradiated 0.9PMN-0.1PT/P(VDF-TrFE) 0-3 composites","authors":"K. H. Lam, H. Chan, C. Choy, E. Luo, I. Wilson","doi":"10.1109/ISAF.2002.1195863","DOIUrl":null,"url":null,"abstract":"Polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE) 70/30 mol%] copolymer can be transformed from a ferroelectric to a relaxor material after proton irradiation. The phase transition peak broadens and shifts towards lower temperature as the measurement frequency decreases. In the present study, 0-3 composites are fabricated by incorporating 0-9Pb(Mg/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.1PbTiO/sub 3/ ceramic powder into a P(VDF-TrFE) 70/30 mol% copolymer matrix. 0.9PMN-0.1PT ceramic is a relaxor ferroelectric with high dielectric permittivity. It was found that the relative permittivity of PMN-PT/P(VDF-TrFE) 0-3 composite increases with increasing ceramic volume fraction. Composites with 0.3 and 0.4 volume fraction of 0.9PMN-0.1PT were subjected to proton irradiation. With a 80 Mrad (4.76 /spl times/ 10/sup 13/ ions/cm/sup 2/) proton dosage, the relative permittivity of the 0.4 volume fraction 0-3 composites can go up to 130 near room temperature (at 1 kHz).","PeriodicalId":415725,"journal":{"name":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2002.1195863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE) 70/30 mol%] copolymer can be transformed from a ferroelectric to a relaxor material after proton irradiation. The phase transition peak broadens and shifts towards lower temperature as the measurement frequency decreases. In the present study, 0-3 composites are fabricated by incorporating 0-9Pb(Mg/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.1PbTiO/sub 3/ ceramic powder into a P(VDF-TrFE) 70/30 mol% copolymer matrix. 0.9PMN-0.1PT ceramic is a relaxor ferroelectric with high dielectric permittivity. It was found that the relative permittivity of PMN-PT/P(VDF-TrFE) 0-3 composite increases with increasing ceramic volume fraction. Composites with 0.3 and 0.4 volume fraction of 0.9PMN-0.1PT were subjected to proton irradiation. With a 80 Mrad (4.76 /spl times/ 10/sup 13/ ions/cm/sup 2/) proton dosage, the relative permittivity of the 0.4 volume fraction 0-3 composites can go up to 130 near room temperature (at 1 kHz).