Power Spectral Density Estimation Using Statistical Smoothing of the Linear Difference Model Parameters of the Random Time Series

V. Yakimov, A. Mashkov, P. Lange, E. Yaroslavkina
{"title":"Power Spectral Density Estimation Using Statistical Smoothing of the Linear Difference Model Parameters of the Random Time Series","authors":"V. Yakimov, A. Mashkov, P. Lange, E. Yaroslavkina","doi":"10.1109/FarEastCon.2019.8934923","DOIUrl":null,"url":null,"abstract":"The parametric estimation problem of a power spectral density for a random process is considered. A linear difference equation with constant parameters as a discrete model of a random process time series is used. An approach that allows simultaneous parameters estimation of the model numerator and denominator is proposed. Such an approach made it possible to increase the computational efficiency of parametric estimation procedures of spectral density power. For a stable estimation of linear difference model parameters, an overdetermined system of equations is used. An increase in the equations number provides a statistical smoothing of the calculated estimates of the definable model parameters. In order to find the best estimates of the model parameters, the least squares method is used. The problem of choosing the model order is reviewed. As the simplest criterion for choosing the linear difference model order, we use the minimum of the residuals square sum. The scheme of the algorithm for the parameters estimating of a linear difference model is given.","PeriodicalId":395247,"journal":{"name":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FarEastCon.2019.8934923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The parametric estimation problem of a power spectral density for a random process is considered. A linear difference equation with constant parameters as a discrete model of a random process time series is used. An approach that allows simultaneous parameters estimation of the model numerator and denominator is proposed. Such an approach made it possible to increase the computational efficiency of parametric estimation procedures of spectral density power. For a stable estimation of linear difference model parameters, an overdetermined system of equations is used. An increase in the equations number provides a statistical smoothing of the calculated estimates of the definable model parameters. In order to find the best estimates of the model parameters, the least squares method is used. The problem of choosing the model order is reviewed. As the simplest criterion for choosing the linear difference model order, we use the minimum of the residuals square sum. The scheme of the algorithm for the parameters estimating of a linear difference model is given.
随机时间序列线性差分模型参数统计平滑的功率谱密度估计
研究随机过程功率谱密度的参数估计问题。采用常参数线性差分方程作为随机过程时间序列的离散模型。提出了一种同时对模型分子和分母进行参数估计的方法。这种方法可以提高谱密度功率参数估计程序的计算效率。对于线性差分模型参数的稳定估计,采用过定方程组。方程数量的增加使可定义模型参数的计算估计具有统计平滑性。为了找到模型参数的最佳估计,采用了最小二乘法。讨论了模型顺序的选择问题。我们使用残差平方和的最小值作为选择线性差分模型阶数的最简单准则。给出了线性差分模型参数估计的算法格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信